Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (4): 337-348.doi: 10.3724/SP.J.1226.2021.20093.

Previous Articles    

The driving force of water resource stress change based on the STIRPAT model: take Zhangye City as a case study

Xia Tang1,2(),XinYuan Wang3,Lei Feng4   

  1. 1.Key Laboratory of Ecohydrology of Inland River Basin, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2.Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    3.Gansu Monitoring Center for Ecological Resources, Lanzhou, Gansu 730020, China
    4.Gansu Computing Center, Lanzhou, Gansu 730030, China
  • Received:2020-10-22 Accepted:2021-01-25 Online:2021-08-31 Published:2021-08-19
  • Contact: Xia Tang
  • Supported by:
    the Natural Science Foundation of Gansu Province, China(18JR3RA385);the National Natural Science Foundation of China(41801079)


A prominent contradiction between supply and demand of water resources has restricted local development in social and economic aspects of Zhangye City, located in a typical arid region of China. Our study quantified the Water Resource Stress Index (WRSI) from 2003 to 2017 and examined the factors of population, urbanization level, GDP per capita, Engel coefficient, and water consumption per unit of GDP by using the extended stochastic impact by regression on population, affluence and technology (STIRPAT) model to find the key factors that impact WRSI of Zhangye City to relieve the pressure on water resources. The ridge regression method is applied to improve this model to eliminate multicollinearity problems. The WRSI system was developed from the following three aspects: water resources utilization (WR), regional economic development water use (WU), and water environment stress (WE). Results show that the WRSI index has fallen from 0.81 (2003) to 0.17 (2017), with an average annual decreased rate of 9.8%. Moreover, the absolute values of normalized coefficients demonstrate that the Engel coefficient has the largest positive contribution to increase WRSI with an elastic coefficient of 0.2709, followed by water consumption per unit of GDP and population with elastic coefficients of 0.0971 and 0.0387, respectively. In contrast, the urbanization level and GDP per capita can decrease WRSI by -0.2449 and -0.089, respectively. The decline of WRSI was attributed to water-saving society construction which included the improvement of water saving technology and the adjustment of agricultural planting structures. Furthermore, this study demonstrated the feasibility of evaluating the driving forces affecting WRSI by using the STIRPAT model and ridge regression analysis.

Key words: water resource stress index, STIRPAT model, driving force analysis, water scarcity

Table 1

Widely cited international water resource stress assessment indicators"

Indicator/indexSpatial scaleReference
Falkenmark water stress indexCountryFalkenmark et al. (1989)
Criticality ratioCountry, RegionRaskin (1997)
Baseline water stressCountry, Region

Zhong et al. (2015)

Luo et al. (2015)

Figure 1

Location of Zhangye City in the Heihe River Basin of China"

Table 2

Details of the WRSI components and sub-dimensions"

Indicator componentsSpecific indicators
Water resources development and utilizationWater availability per capita (m3/(person?a))
(WR)Per hm2 water availability (m3/(person?a))
Regional economic development water useIndustrial water consumption per ten thousand yuan of GDP ($/m3)
(WU)Grain yield of per m3 of water (kg/m3)
Water environment pressure(WE)Average annual groundwater table depth (m)
Annual discharge of waste water (t)

Table 3

Variables in the extended STIRPAT model"

Independent variablesDefinition of measuring methodUnit of measurement
P—populationPopulation sizemillion
A—economic levelGDP per capitaUS dollar
U—urbanization levelThe percent of urban population on the total population%
E—living standardEngel coefficient%
T—technical levelWater consumption per unit of GDPm3/$

Figure 2

Dynamics of water resource stress index from 2003 to 2017"

Figure 3

Ridge trace curve"

Table 4

Univariate statistical analysis of the driving factors"

Independent VariablesP (million)A (US dollar)UET (m3/$)

Table 5

Matrix of correlations between variables"

WRSIPearson correlations0.576*-0.773**-0.815**0.872**0.777**

Table 6

Matrix of correlation between variables"


Table 7

Influencing factors of water resource stress by OLS"

VariablesUnstandardized coefficientsStd. errort statisticSig.VIF
R-squared-0.993Adjusted R-squared-0.996

Table 8

Results of the ridge regression (K=0.2)"

VariablesNon-normalized coefficient (β)Std. errort statisticSig. tVIF

Figure 4

Water structure change"

Alcamo J, Do¨ll P, Kaspar F, et al., 1997. Global change and global scenarios of water use and availability: an application of water GAP1.0. Report A9701. Center for Environmental Systems Research (CESR), University of Kassel, Germany.
Ang BW, 2005. The LMDI approach to decomposition analysis: a practical guide. Energy Policy, 33(7): 867-871. DOI: 10.1016/j.enpol.2003.10.010.
doi: 10.1016/j.enpol.2003.10.010
Cheng GD, 2002. Study on the sustainable development in Heihe River Watershed from the view of ecological economics. Journal of Glaciology and Geocryology, 24(4): 335-344. DOI: 10.1038/
doi: 10.1038/
Cheng GD, Li X, Zhao WZ, et al., 2014. Integrated study of the water-ecosystem-economy in the Heihe River Basin. National Science Review, 1(3): 413-428. DOI: 10.1093/nsr/nwu017.
doi: 10.1093/nsr/nwu017
Deng XZ, Zhao CH, 2015. Identification of water scarcity and providing solutions for adapting to climate changes in the Heihe River Basin of China. Advances in Meteorology, 2015: 1-13. DOI: 10.1155/2014/279173.
doi: 10.1155/2014/279173
Dietz T, Rosa EA, York R, 2007. Driving the human ecological footprint. Frontiers in Ecology and the Environment, 5(1): 13-18.
Dietz T, Rosa EA, 1994. Rethinking the environmental impacts of population, affluence and technology. Human Ecology Review, 1(2): 277-300. DOI: 10.2307/24706840.
doi: 10.2307/24706840
Dijkstra TK, 2014. Ridge regression and its degrees of freedom. Quality & Quantity, 48(6): 3185-3193. DOI: 10.1007/s11135-013-9949-7.
doi: 10.1007/s11135-013-9949-7
Ehrlich PR, Holdren JP, 1971. Impact of population growth. Science, 171: 1212-1217. DOI:10.1126/science.171. 3977. 1212.
doi: 10.1126/science.171. 3977. 1212
Falkenmark M, Widstrand C, 1989. Population and water resources: a delicate balance. Population Bulletin, 47(3): 1-36. DOI: 10.1007/BF01358045.
doi: 10.1007/BF01358045
Water Resources Bulletin, 2013. Gansu Province Ministry of Water Resource, Lanzhou, China.
Gassert FM, Landis M, Luck P, et al., 2013. Aqueduct Global Maps 2.0. Washington, DC: World Resources Institute.
Hoerl AE, Kennard RW, 1970. Ridge regression: applications to nonorthogonal problems. Technometrics, 12(1): 69-82. DOI: 10.1080/00401706.1970.10488635.
doi: 10.1080/00401706.1970.10488635
Hoerl AE, Kennard RW, 2000. Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 42(1): 80-86. DOI: 10.2307/1271436.
doi: 10.2307/1271436
Jemmali H, Abu GL, 2016. Multidimensional analysis of the water-poverty nexus using a modified Water Poverty Index: A case study from Jordan. Water Policy, 18: 826-843. DOI: 10.2166/wp.2016.147.
doi: 10.2166/wp.2016.147
Jin C, Huang K, Yu YJ, et al., 2016. Analysis of influencing factors of water footprint based on the STIRPAT Model: evidence from the Beijing agricultural sector. Water, 8(11): 1-13. DOI: 10.3390/w8110513.
doi: 10.3390/w8110513
Liang X, Gong QX, Zheng HT, et al., 2020. Examining the impact factors of the water environment using the extended stirpat model: a case study in sichuan. Environmental Science and Pollution Research, 27(12): 12942-12952. DOI: 10.1007/s11356-019-06745-z.
doi: 10.1007/s11356-019-06745-z
Liu Y, Hu X, Zhang Q, et al., 2017. Improving agricultural water use efficiency: a quantitative study of Zhangye city using the static CGE model with a CES water - land resources account. Sustainability, 9(2): 308. DOI: 10.3390/su9020308.
doi: 10.3390/su9020308
Lu ZX, Wei YP, Xiao HL, et al., 2015. Evolution of the human-water relationships in Heihe River Basin in the past 2000 years. Hydrology & Earth System Sciences Discussions12(1): 1059-1091. DOI: 10.5194/hessd-12-1059-2015.
doi: 10.5194/hessd-12-1059-2015
Luo TY, Robert Y, Paul R, 2015. Aqueduct Projected Water Stress Country Rankings. Washington, D.C.: World Resources Institute.
Ma M, Yan R, Cai W, 2017. An extended STIRPAT model-based methodology for evaluating the driving forces affecting carbon emissions in existing public building sector: evidence from China in 2000-2015. Natural Hazards, 89(2): 741-756. DOI: 10.1007/s11069-017-2990-4.
doi: 10.1007/s11069-017-2990-4
Norman ES, Dunn G, Bakker K, et al., 2013. Water security assessment: integrating governance and freshwater indicators. Water Resources Management, 27(2): 535-551. DOI: 10.1007/s11269-012-0200-4.
doi: 10.1007/s11269-012-0200-4
Pandey VP, Manandhar S, Kazama F, 2012. Water Poverty Situation of Medium-sized River Basins in Nepal. Water Resources Management, 26(9): 2475-2489. DOI: 10.1007/s11269-012-0027-z.
doi: 10.1007/s11269-012-0027-z
Perveen S, James LA, 2010. Multiscale effects on spatial variability metrics in global water resources data. Water Resources Management, 24(9): 1903-1924. DOI: 10.1007/s11269-009-9530-2.
doi: 10.1007/s11269-009-9530-2
Raskin P, 1997. Water futures: assessment of long-range patterns and problems background document to the comprehensive assessment of the freshwater resources of the world report. Stockholm: Stockholm Environmental Institute.
Rosa EA, Dietz T, 2012. Human drivers of national greenhouse-gas emissions. Nature Climate Change, 2(8): 581-586. DOI: 10.1038/nclimate1506.
doi: 10.1038/nclimate1506
Schlosser CA, Strzepek K, Gao X, et al., 2014. The future of global water stress: An integrated assessment. Earth's Future, 2(8): 341-361. DOI: 10.1002/2014EF000238.
doi: 10.1002/2014EF000238
Falkenmark M, 1989. The massive water scarcity now threatening Africa: why isn't it being addressed. Ambio, 18(2): 112-118.
Shafiei S, Salim RA, 2014. Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: a comparative analysis. Energy Policy, 66: 547-556. DOI: 10.1016/j.enpol.2013.10.064.
doi: 10.1016/j.enpol.2013.10.064
Smith ML, Mohanty RK, 2018. Monsoons, rice production, and urban growth: The microscale management of 'too much' water. The Holocene, 28(8): 1325-1333. DOI: 10. 1177/0959683618771497.
doi: 10. 1177/0959683618771497
Tang X, Feng Q, 2016. The temporal-spatial assessment of water scarcity with the Water Poverty Index: a study in the middle basin of the Heihe River, northwest China. Water Science and Technology: Water Supply, 16(5): 1266-1276. DOI: 10.2166/ws.2016.053.
doi: 10.2166/ws.2016.053
Tang X, Zhang ZQ, Wei YP, et al., 2014. Quantitative evaluation of water resources pressure in Heihe River Basin. Bulletin of Soil and Water Conservation, 34(6): 199-224.
The Sustainable Development Strategy Research Group of Chinese Academy of Sciences, 2007. 2007 China sustainable development strategy report: water: governance and innovation. Beijing: Science Press.
Timmermans HJ, 1981. Multiattribute shopping models and ridge regression analysis. Environment and Planning A, 13(1): 43-56. DOI: 10.1068/a130043.
doi: 10.1068/a130043
UN-Water, 2019. UN World Water Development Report 2019: Leaving No One Behind. .
Vörösmarty CJ, McIntyre PB, Gessner MO, et al., 2010. Global threats to human water security and river biodiversity. Nature, 467: 555-561. DOI: 10.1038/nature09440.
doi: 10.1038/nature09440
Wada Y, LPHV Beek, Viviroli D, et al., 2011. Global monthly water stress: 2. Water demand and severity of water stress. Water Resources Research, 47: 1-17. DOI: 10.1029/2010WR009792.
doi: 10.1029/2010WR009792
Wheater H, Evans E, 2009. Land use, water management and future flood risk. Land Use Policy, 26: 251-264. DOI: 10. 1016/j.landusepol.2009.08.019.
doi: 10. 1016/j.landusepol.2009.08.019
Xiong Z, Yan XD, 2013. Building a high-resolution regional climate model for the Heihe River Basin and simulating precipitation over this region. Chinese Science Bulletin, 58(36): 4670-4678. DOI: 10.1007/s11434-013-5971-3.
doi: 10.1007/s11434-013-5971-3
York R, Rosa EA, Dietz T, 2003. STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics, 46(3): 351-365. DOI: 10.1016/S0921-8009(03)00188-5
doi: 10.1016/S0921-8009(03)00188-5
Zhang Q, Liu B, Zhang W, et al., 2015. Assessing the regional spatio-temporal pattern of water stress: A case study in Zhangye City of China. Physics and Chemistry of the Earth, Parts A, B and C, 79: 20-28. DOI: 10.1016/j.pce. 2014.10.007.
doi: 10.1016/j.pce. 2014.10.007
Zhang Z, Shi M, Yang H, 2012. Understanding Beijing's water challenge: A decomposition analysis of changes in Beijing's water footprint between 1997 and 2007. Environmental Science Technology, 46(22): 12373-12380. DOI: 10. 1021/es302576u.
doi: 10. 1021/es302576u
Zhao C, Chen B, Hayat T, et al., 2014. Driving force analysis of water footprint change based on extended STIRPAT model: Evidence from the Chinese agricultural sector. Ecological Indicators, 47: 43-49. DOI: 10.1016/j.ecolind. 2014.04.048.
doi: 10.1016/j.ecolind. 2014.04.048
Zhong LJ, Fu XT, Tien S, et al., 2015. Water Stress Analysis and Recommendations for Water Resources Management in Ningxia. Beijing: World Resources Institute.
Zhou Q, Yang S, Zhao C, et al., 2016. Development and implementation of a spatial unit non-overlapping water stress index for water scarcity evaluation with a moderate spatial resolution. Ecological Indicators, 69: 422-433. DOI: 10. 1016/j.ecolind.2016.05.006.
doi: 10. 1016/j.ecolind.2016.05.006
No related articles found!
Full text



No Suggested Reading articles found!