Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (6): 461-469.doi: 10.3724/SP.J.1226.2019.00461.

Previous Articles     Next Articles

An evaluation of soil moisture from AMSR-E over source area of the Yellow River, China

TangTang Zhang1,2(),Mekonnen Gebremichael2,Akash Koppa2,XianHong Meng1,3,Qun Du4,Jun Wen5   

  1. 1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2. Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095-1593, USA
    3. Zoige Wetland and Ecosystem Research Station, NIEER, Zoige, Sichuan 624500, China
    4. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    5. College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
  • Received:2019-07-23 Accepted:2019-11-15 Online:2019-12-31 Published:2020-01-07
  • Contact: TangTang Zhang E-mail:ttzhang@lzb.ac.cn

Abstract:

In this study, in-situ soil moisture measurements are used to evaluate the accuracy of three AMSR-E soil moisture products from NASA (National Aeronautics and Space Administration), JAXA (Japanese Aerospace Exploration Agency) and VUA (Vrije University Amsterdam and NASA) over Maqu County, Source Area of the Yellow River (SAYR), China. Results show that the VUA soil moisture product performs the best among the three AMSR-E soil moisture products in the study area, with a minimum RMSE (root mean square error) of 0.08 (0.10) m3/m3 and smallest absolute error of 0.07 (0.08) m3/m3 at the grassland area with ascending (descending) data. Therefore, the VUA soil moisture product is used to describe the spatial variation of soil moisture during the 2010 growing season over SAYR. The VUA soil moisture product shows that soil moisture presents a declining trend from east south (0.42 m3/m3) to west north (0.23 m3/m3), with good agreement with a general precipitation distribution. The center of SAYR presents extreme wetness (0.60 m3/m3) during the whole study period, especially in July, while the head of SAYR presents a high level soil moisture (0.23 m3/m3) in July, August and September.

Key words: AMSR-E soil moisture products, soil moisture ground measurements, source area of the Yellow River, AMSR-E soil moisture products applicability

Table 1

Maqu network station information (Dente et al., 2012b)"

Station Depth (cm) Elevation (m) Land cover Bulk density (kg/m3) Soil texture Topography
CST_01 5 3,491 Grass NA NA River valley
CST_02 5 3,449 Grass NA NA River valley
CST_03 5 3,508 Grass NA NA Hill valley
CST_04 5 3,505 Grass NA NA Hill valley
CST_05 5 3,542 Grass NA NA Hill valley
NST_01 5 3,431 Grass 0.96 Silt loam River valley
NST_02 5 3,434 Grass 0.81 Silt loam River valley
NST_03 5 3,513 Grass 0.63 Silt loam Hill slope
NST_04 5 3,448 Wetland grass 0.26 Silt loam River valley
NST_05 5 3,476 Grass 0.75 Silt loam Hill slope
NST_06 5 3,428 Grass 0.81 Silt loam River valley
NST_07 5 3,430 Grass 0.58 Silt loam River valley
NST_08 5 3,473 Grass 1.06 Silt loam Valley
NST_09 5 3,434 Grass 0.91 Sandy loam River valley
NST_10 5 3,512 Grass 1.05 Loam-silt loam Hill slope
NST_11 5 3,442 Wetland grass 0.24 Silt loam River valley
NST_12 5 3,441 Grass 1.02 Silt loam River valley
NST_13 5 3,519 Grass 0.67 Silt loam Valley
NST_14 5 3,432 Grass 0.68 Silt loam River valley
NST_15 5 3,752 Grass 0.78 Silt loam Hill slope

Figure 1

Temporal variation of three soil moisture products obtained from ascending overpasses (top) and from descending overpasses (bottom), compared with in situ soil moisture measurements and precipitation in 2010"

Table 2

Statistics of AMSR-E soil moisture and soil moisture of network measurements"

Data JAXA NASA VUA
DC RMSE AE DC RMSE AE DC RMSE AE
A 0.28 0.15 0.13 0.70 0.19 0.16 0.49 0.08 0.07
D 0.63 0.21 0.20 0.72 0.21 0.19 0.52 0.10 0.08

Figure 2

Variation of soil moisture over the SAYR during the period from June to September (the unit of soil moisture is m3/m3)"

Figure 3

The three soil moisture data from AMSR-E versus ground measurements of top layer soil moisture (July, August and September) for ascending passes (top) and for descending passes (bottom)"

Table 3

Statistics of the AMSR-E soil moisture and ground measurements in 2010 (units: m3/m3)"

Data JAXA NASA VUA OBV
MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE
A 0.59 0.04 0.18 0.24 0.11 0.16 0.60 0.21 0.39 0.47 0.08 0.22
D 0.54 0.03 0.11 0.29 0.11 0.13 0.57 0.18 0.34 0.47 0.07 0.22
Albergel C , De Rosnay P , Gruhier C , et al. , 2012. Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sensing of Environment, 118: 215-226. DOI: 10.1016/j.rse. 2011.11.017 .
doi: 10.1016/j.rse. 2011.11.017
Bi H , Ma J , Zheng W , et al. , 2016. Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 121: 2658-2678. DOI: 10.1002/2015JD024131 .
doi: 10.1002/2015JD024131
Bing T , Gao ZQ , Robert H , et al. , 2016. An empirical model for estimating soil thermal conductivity from soil water content and porosity. Journal of Hydrometeorology, 17: 601. DOI: 10.1175/JHM-D-15-0119.1 .
doi: 10.1175/JHM-D-15-0119.1
Bindlish R , Jackson TJ , Gasiewski AJ , et al. , 2006. Soil moisture mapping and AMSR-E validation using the PSR in SMEX02. Remote Sensing of Environment, 103: 127-139. DOI: 10.1016/j.rse.2005.02.003 .
doi: 10.1016/j.rse.2005.02.003
Chan SK , Bindlish R , O'Neill P , et al. , 2018. Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sensing of Environment, 204: 931-941. DOI: 10.1016/j.rse.2017.08.025 .
doi: 10.1016/j.rse.2017.08.025
Chen YY , Yang K , Qin J , et al. , 2013. Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 118: 4466-4475. DOI: 10.1002/jgrd.50295 .
doi: 10.1002/jgrd.50295
Cho E , Su CH , Ryu D , et al. , 2017. Does AMSR2 produce better soil moisture retrievals than AMSR-E over Australia?. Remote Sensing of Environment, 188: 95-105. DOI: 10. 1016/j.rse.2016.10.050 .
doi: 10. 1016/j.rse.2016.10.050
Colliander A , Jackson TJ , Bindlish R , et al. , 2017. Validation of SMAP surface soil moisture products with core validation sites. Remote Sensing of Environment, 191: 215-231. DOI: 10.1016/j.rse.2017.01.021 .
doi: 10.1016/j.rse.2017.01.021
Cosgrove BA, Lohmann D , Mitchell KE, et al. , 2003. Land surface model spin-up behavior in the North American Land Data Assimilation System (NLDAS). Journal of Geophysical Research: Atmospheres, 108D22: 8845. DOI: 10. 1029/2002jd003316 .
doi: 10. 1029/2002jd003316
De Rosnay P , Calvet JC , Kerr Y , et al. , 2006. SMOSREX: A long term field campaign experiment for soil moisture and land surface processes remote sensing. Remote Sensing of Environment, 102: 377-389. DOI: 10.1016/j.rse.2006. 02.021 .
doi: 10.1016/j.rse.2006. 02.021
Dente L , Su Z , Wen J , 2012a. Validation of SMOS soil moisture products over the Maqu and Twente Regions. Sensors (Basel, Switzerland), 12: 9965-9986. DOI: 10.3390/s1208 09965 .
doi: 10.3390/s1208 09965
Dente L , Vekerdy Z , Wen J , et al. , 2012b. Maqu network for validation of satellite-derived soil moisture products. International Journal of Applied Earth Observation and Geoinformation, 17: 55-65. DOI: 10.1016/j.jag.2011.11.004 .
doi: 10.1016/j.jag.2011.11.004
Douville H , Chauvin F , Broqua H , 2001. Influence of soil moisture on the Asian and African Monsoons. Part I: Mean monsoon and daily precipitation. Journal of Climate, 14: 2381-2403. DOI: 10.1175/1520-0442(2001)0142.0.CO;2 .
doi: 10.1175/1520-0442(2001)0142.0.CO;2
Draper CS , Walker JP , Steinle PJ , et al. , 2009. An evaluation of AMSR-E derived soil moisture over Australia. Remote Sensing of Environment, 113: 703-710. DOI: 10.1016/j.rse.2008.11.011 .
doi: 10.1016/j.rse.2008.11.011
Draper C , Reichle R , De Jeu R , et al. , 2013. Estimating root mean square errors in remotely sensed soil moisture over continental scale domains. Remote Sensing of Environment, 137: 288-298. DOI: 10.1016/j.rse.2013.06.013 .
doi: 10.1016/j.rse.2013.06.013
Gómez-Plaza A , Alvarez-Rogel J , Albaladejo J , et al. , 2000. Spatial patterns and temporal stability of soil moisture across a range of scales in a semi‐arid environment. Hydrological Processes, 14: 1261-1277. DOI: 10.1002/ (SICI)1099-1085200005
doi: 10.1002/
Hawley ME , Jackson TJ , McCuen RH , 1983. Surface soil moisture variation on small agricultural watersheds. Journal of Hydrology, 62: 179-200. DOI: 10.1016/0022-1694(83)90102-6 .
doi: 10.1016/0022-1694(83)90102-6
Hu YR , Maskey S , Uhlenbrook S , 2012. Trends in temperature and rainfall extremes in the Yellow River source region, China. Climatic Change, 110: 403-429. DOI: 10.1007/s10584-011-0056-2 .
doi: 10.1007/s10584-011-0056-2
Iqbal M , Wen J , Wang SP , et al. , 2018. Variations of precipitation characteristics during the period 1960-2014 in the source region of the Yellow River, China. Journal of Arid Land, 10(3): 388-401. DOI: CNKI:SUN:GHKX.0.2018-03-005 .
doi: CNKI:SUN:GHKX.0.2018-03-005
Jin HJ , He RX , Cheng GD , et al. , 2009. Changes in frozen ground in the source area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environmental Research Letters, 4: 045206. DOI: 10.1088/1748-9326/4/4/045206 .
doi: 10.1088/1748-9326/4/4/045206
Jackson TJ , Cosh MH , Bindlish R , et al. , 2010. Validation of advanced microwave scanning radiometer soil moisture products. IEEE Transactions on Geoscience and Remote Sensing, 48: 4256-4272. DOI: 10.1109/tgrs.2010.2051035 .
doi: 10.1109/tgrs.2010.2051035
Jackson TJ , Schmugge TJ , 1989. Passive microwave remote sensing system for soil moisture: some supporting research. IEEE Transactions on Geoscience and Remote Sensing, 27: 225-235. DOI: 10.1109/36.20301 .
doi: 10.1109/36.20301
Jiang HT , Shen HF , Li HF , et al. , 2017. Evaluation of multiple downscaled microwave soil moisture products over the Central Tibetan Plateau. Remote Sensing, 9: 402. DOI: 10.3390/rs9050402 .
doi: 10.3390/rs9050402
Kang CS , Kanniah KD , et al. , 2013. Validation of AMSR-E soil moisture product and the future perspective of soil moisture estimation using SMOS data over tropical region. 2013 IEEE International Geoscience and Remote Sensing Symposium―IGARSS, pp. 3730-3733. DOI: 10.1109/IGARSS.2013.6723641 .
doi: 10.1109/IGARSS.2013.6723641
Kerr YH , 2007. Soil moisture from space: Where are we. Hydrogeology Journal, 15(1): 117-120. DOI: 10.1007/s10040-006-0095-3 .
doi: 10.1007/s10040-006-0095-3
Lv SN , Zeng YJ , Wen J , et al. , 2018. Estimation of penetration depth from soil effective temperature in microwave radiometry. Remote Sensing, 10(4): 519. DOI: 10.3390/rs10040519 .
doi: 10.3390/rs10040519
Lv SN , Zeng YJ , Su ZB , et al. , 2019. A Closed-form expression of soil temperature sensing depth at L-Band. IEEE Transactions on Geoscience and Remote Sensing, 99: 1-9. DOI: 10.1109/TGRS.2019.2893687 .
doi: 10.1109/TGRS.2019.2893687
Njoku EG , Entekhabi D , 1996. Passive microwave remote sensing of soil moisture. Journal of Hydrology, 184: 101-129. DOI: 10.1007/978-3-642-60567-3_14 .
doi: 10.1007/978-3-642-60567-3_14
Njoku EG , Jackson TJ , Lakshmi V , et al. , 2003. Soil moisture retrieval from AMSR-E. IEEE Transactions on Geoscience and Remote Sensing, 41: 215-229. DOI: 10.1109/TGRS. 2002.808243 .
doi: 10.1109/TGRS. 2002.808243
Njoku EG , Ashcroft P , Chan TK , et al. , 2005. Global survey and statistics of radio-frequency interference in AMSR-E Land Observations. IEEE Transactions on Geoscience and Remote Sensing, 43: 938-947. DOI: 10.1109/TGRS.2004. 837507 .
doi: 10.1109/TGRS.2004. 837507
Njoku EG , Chan SK , 2005. Vegetation and surface roughness effects on AMSR-E land observations. Remote Sensing of Environment, 100: 190-199. DOI: 10.1016/j.rse.2005. 10.017 .
doi: 10.1016/j.rse.2005. 10.017
Orth R , Seneviratne SI , 2012. Analysis of soil moisture memory from observations in Europe. Journal of Geophysical Research: Atmospheres, 117: D15115. DOI: 10.1029/2011JD 017366 .
doi: 10.1029/2011JD 017366
Owe M , Jeu RD , Walker J , 2001. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Transactions on Geoscience and Remote Sensing, 39: 1643-1654.
Pan T , Wu SH , Liu YJ , 2015. Relative contributions of land use and climate change to water supply variations over yellow river source area in Tibetan Plateau during the past three decades. PLOS ONE, 10: e0123793. DOI: https://doi.org/10.1371/journal.pone.0123793 .
doi: 10.1371/journal.pone.0123793
Qin J , Liang SL , Yang K , et al. , 2009. Simultaneous estimation of both soil moisture and model parameters using particle filtering method through the assimilation of microwave signal. Journal of Geophysical Research: Atmospheres, 114: D15103. DOI: 10.1029/2008JD011358 .
doi: 10.1029/2008JD011358
Qiu Y , Fu BJ , Wang J , et al. , 2001. Soil moisture variation in relation to topography and land use in a hillslope catchment of the Loess Plateau, China. Journal of Hydrology, 240: 243-263. DOI: 10.1016/s0022-1694(00)00362-0 .
doi: 10.1016/s0022-1694(00)00362-0
Ray RL , Jacobs JM , 2006. Relationships among remotely sensed soil moisture, precipitation and landslide events. Natural Hazards, 43(2): 211-222. DOI: 10.1007/s11069-006-9095-9 .
doi: 10.1007/s11069-006-9095-9
Sahoo AK , Houser PR , Ferguson C , et al. , 2008. Evaluation of AMSR-E soil moisture results using the in-situ data over the Little River Experimental Watershed, Georgia. Remote Sensing of Environment, 112(6): 3142-3152. DOI: 10. 1016/j.rse.2008.03.007 .
doi: 10. 1016/j.rse.2008.03.007
Schmugge TJ , 1983. Remote Sensing of Soil Moisture: Recent Advances. IEEE Transactions on Geoscience and Remote Sensing, GE-21, pp. 336-344.
Su ZB , Wen J , Dente L , et al. , 2011. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrology and Earth System Sciences, 15: 2303. DOI: 10.5194/hess-15-2303-2011 .
doi: 10.5194/hess-15-2303-2011
Susan C , Dunne DE, Njoku EG , 2007. Impact of multiresolution active and passive microwave measurements on soil moisture estimation using the Ensemble Kalman Smoother. IEEE Transactions on Geoscience and Remote Sensing, 45: 1016-1028. DOI: 10.1109/tgrs.2006.890561 .
doi: 10.1109/tgrs.2006.890561
Wagner W , Lemoine G , Rott H , 1999. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sensing of Environment, 70: 191-207. DOI: 10.1016/S0034-4257(99)00036-X .
doi: 10.1016/S0034-4257(99)00036-X
Wang YL , Wang X , Li CH , et al. , 2015. Spatiotemporal analysis of temperature trends under climate change in the source region of the Yellow River, China. Theoretical and applied Climatology, 119: 123-133. DOI: 10.1016/j.scitotenv.2012.03.081 .
doi: 10.1016/j.scitotenv.2012.03.081
Wen J , Su ZB , 2003. A time series based method for estimating relative soil moisture with ERS wind scatterometer data. Geophysical Research Letters, 30(7): 1397. DOI: 10.1029/2002gl016557 .
doi: 10.1029/2002gl016557
Western AW , Blöschl G , 1999. On the spatial scaling of soil moisture. Journal of Hydrology, 217: 203-224. DOI: 10. 1016/S0022-1694(98)00232-7 .
doi: 10. 1016/S0022-1694(98)00232-7
Xue YK , Juang HMH , Li WP , et al. , 2004. Role of land surface processes in monsoon development: East Asia and West Africa. Journal of Geophysical Research: Atmospheres, 109: D03105. DOI: 10.1029/2003JD003556 .
doi: 10.1029/2003JD003556
Yang ZL , Dickinson RE , Henderson-Sellers A , et al. , 1995. Preliminary study of spin-up processes in land surface models with the first stage data of Project for Intercomparison of Land Surface Parameterization Schemes Phase 1(a). Journal of Geophysical Research: Atmospheres, 100: 16553-16578. DOI: 10.1029/95jd01076 .
doi: 10.1029/95jd01076
Zeng JY , Li Z , Chen Q , et al. , 2015. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations. Remote Sensing of Environment, 163: 91-110. DOI: https://doi.org/10.1016/j.rse.2015.03.008 .
doi: 10.1016/j.rse.2015.03.008
Zhang TT , Wen J , Su ZB , et al. , 2009. Soil moisture mapping over the Chinese Loess Plateau using ENVISAT/ASAR data. Advances in Space Research, 43: 1111-1117. DOI: 10. 1016/j.asr.2008.10.030 .
doi: 10. 1016/j.asr.2008.10.030
Zheng DH , Wang X , Velde van der R , et al. , 2017. L-Band Microwave emission of soil freezesc-thaw process in the Third Pole environment. IEEE Transactions on Geoscience and Remote Sensing, 99, pp. 1-15. DOI: 10.1109/TGRS. 2017.2705248
doi: 10.1109/TGRS. 2017.2705248
Zucco G , Brocca L , Moramarco T , et al. , 2014. Influence of land use on soil moisture spatial-temporal variability and monitoring. Journal of Hydrology, 516: 193-199. DOI: 10.1016/j.jhydrol.2014.01.043 .
doi: 10.1016/j.jhydrol.2014.01.043
Zuo ZY , Zhang RH , 2016. Influence of soil moisture in eastern China on the East Asian summer monsoon. Advances in Atmospheric Sciences, 33: 151-163. DOI: 10.1007/s00376-015-5024-8 .
doi: 10.1007/s00376-015-5024-8
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!