Sciences in Cold and Arid Regions ›› 2019, Vol. 11 ›› Issue (3): 194-207.doi: 10.3724/SP.J.1226.2019.00194.

Previous Articles     Next Articles

Assessing the impacts of ecological-living-productive land changes on eco-environmental quality in Xining City on Qinghai-Tibet Plateau, China

ZiYi Gao1,HaiFeng Zhang1(),XiaoNan Yang2,ZhiYuan Song3   

  1. 1. School of Geographical Science, Qinghai Normal University, Xining, Qinghai 810008, China
    2. Institute of Soil and Water Conservation, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
    3. Department of Computer Science and Technology, Lvliang University, Lvliang, Shanxi 033000, China
  • Received:2019-02-07 Revised:2019-04-27 Online:2019-06-30 Published:2019-07-01
  • Contact: HaiFeng Zhang E-mail:haifzhang@126.com

Abstract:

The Ecological-living-productive land (ELPL) classification system was proposed in an effort to steer China’s land pattern to an ecological-centered path, with the development model shifting from a single function into more integrated multi-function land use. The focus is coordinating the man-land contradictions and developing an intensive, efficient and sustainable land use policy in an increasingly tense relationship between humans and nature. Driven by socioeconomic change and rapid population growth, many cities are undergoing urban sprawl, which involves the consumption of cropland and ecological land and threatens the ecological balance. This paper aims to quantitatively analyze the critical effects of ELPL changes on eco-environmental quality according to land use classification based on leading function of ecology, living and production from 1990 to 2015 with a case study of Xining City. Also, four future land use scenarios were simulated for 2030 using the Future Land Use Simulation (FLUS) model that couples human and natural effects. Our results show a decrease in productive land (PL) and an increase in ecological land (EL) and living land (LL) in Xining City. Forestry ecological land (FEL) covered the top largest proportion; agriculture productive land (APL) showed the greatest reduction and urban and rural living land (U-RLL) presented a dramatic increase. The eco-environmental quality improved in 1990-2010, mainly affected by the conversion of APL to FEL and GEL. However, the encroachment of U-RLL into APL, other ecological land (OEL) and FEL was the main contributor to the decline in eco-environmental quality in 2010-2015 as well as the primary reason for the increase area of lower-quality. The Harmonious Development (HD)-Scenario, characterized by a rational allocation of LL and PL and a better eco-environment, would have implications for planning and monitoring future management of ELPL, and may represent a valuable reference for local policy-makers.

Key words: land use, productive-living-ecological land changes, eco-environmental quality, FLUS model, Xining City

Figure 1

Study area location of Xining City"

Table 1

The Ecological-living-productive land (ELPL) classification and eco-environmental quality index"

The leading function of ELPL Land use types Eco-environmental quality index
First classification Second classification
Productive land Agricultural productive land Paddy field 0.30
Dry land 0.25
Industry productive land Industrial Park 0.20
Ecological land Forestry ecological land Woodland 0.95
Shrubbery 0.65
Sparse shrub 0.45
Other woodland 0.40
Grass ecological land High coverage grassland 0.75
Medium coverage grassland 0.45
Low coverage grassland 0.20
Water ecological land Canal 0.55
Lake 0.75
Reservoir pits 0.55
Permanent glacier snow 0.90
Mudflats 0.45
Flats 0.55
Other ecological land Sand 0.01
Gobi 0.01
Saline 0.05
Marshland 0.65
Bare land 0.05
Bare exposed rock 0.01
Living land Urban and rural living land Transportation 0.20
Urban land 0.20
Rural settlement 0.20

Figure 2

Flow chart of the FLUS model"

Table 2

Parameters determination for the four scenarios in Qinghai-Tibet Plateau (Liu et al. (2017b))"

Scenarios SD-scenario HD-scenario FD-scenario BD-scenario
Factors Annual population growth (%/a) 0.85 0.80 1.40 0.91
Annual economic growth (%/a) 7.24 8.12 10.03 8.50
Annual precipitation change (%/a) 0.1162 4.0761 4.3072 2.948
Annual temperature change (%/a) 0.0044 0.0681 0.0681 0.0451

Figure 3

First classification of ecological-living-productive land in Xining City"

Figure 4

Areas of ecological-living-productive land (a) and eco-environmental quality grade (b) from 1990-2015. APL:"

Table 3

Transition matrix of land use types in Xining City during 1990-2000 (hm2)"

1990 2000
APL IPL FEL GEL WEL OEL U-RLL
APL 18,181.24 122.81 590.77 102.19 0.75 48.25 530.57
IPL 26.05 165.92 0.36 1.63 - 3.12 0.29
FEL 104.21 0.28 16,681.27 3.7 10.43 0.74 26.26
GEL 167.42 0.24 5.89 3,544.74 - 0.07 3.61
WEL 0.18 - 0.23 - 264.48 - 0.27
OEL 64.11 0.07 1.80 0.34 5.78 808.51 17.45
U-RLL 129.04 0.35 5.11 4.77 0.21 0.69 6,634.11

Table 4

Transition matrix of land use types in Xining City during 2000-2010 (hm2)"

2000 2010
APL IPL FEL GEL WEL OEL U-RLL
APL 11,169.26 266.01 4,099.48 695.86 14.39 117.98 2,277.27
IPL 3.40 283.38 1.32 0.04 - 0.12 1.40
FEL 204.55 26.42 16,574.12 280.83 13.22 54.50 98.86
GEL 64.69 17.48 282.34 3,213.35 3.80 21.82 52.68
WEL 1.71 - 8.30 4.34 249.09 3.94 14.37
OEL 19.87 5.06 62.01 32.50 6.11 702.08 36.44
U-RLL 83.70 28.97 79.46 36.65 11.87 26.84 7,007.71

Table 5

Transition matrix of land use types in Xining City during 2010-2015 (hm2)"

2010 2015
APL IPL FEL GEL WEL OEL U-RLL
APL 8,460.59 68.64 260.72 96.98 3.59 119.61 2,539.86
IPL 5.90 555.48 3.37 4.29 - 0.54 57.81
FEL 292.10 22.02 20,162.59 342.13 10.60 57.61 228.18
GEL 80.79 11.87 302.97 3,678.18 5.16 20.25 164.95
WEL 1.79 - 10.87 5.10 266.56 0.92 13.35
OEL 4.81 5.63 61.37 36.02 4.96 389.21 425.47
U-RLL 70.82 128.51 77.17 52.70 13.86 98.94 9,034.90

Figure 5

Second classification of ecological-living-productive land in Xining City. BD: baseline development; FD: fast development; SD: slow development; HD: harmonious development"

Figure 7

Simulated ecological-living-productive land and the actual ecological-living-productive land in 2015"

Figure 8

Areas of ecological-living-productive land (a) and eco-environmental quality grade (b) for four scenarios in 2030. APL: agriculture productive land; IPL: industry productive land; FEL: forestry ecological land; GEL: grass ecological land; WEL: water ecological land; OEL: other ecological land; U-RLL: urban and rural living land; BD: baseline development; FD: fast development; SD: slow development; HD: harmonious development"

Figure 6

Distribution of eco-environmental quality in Xining City. BD: baseline development; FD: fast development; SD: slow development; HD: harmonious development"

Table 6

Main land use transformation types improving and reducing the regional eco-environment"

1990-2000 2000-2010 2010-2015
Mode Main land use types Contribution ratio Weights of contribution ratio (%) Contribution ratio Weights of contribution ratio (%) Contribution ratio Weights of contribution ratio (%)
Improving the regional eco-environment APL to FEL 0.007222 0.535 0.050104 0.801 0.003187 0.331
APL to GEL 0.001069 0.079 0.007280 0.116 0.001015 0.105
OEL to FEL 0.000032 0.002 0.001102 0.018 0.001091 0.113
OEL to WEL 0.003194 0.237 0.000063 0.001 0.000051 0.005
U-RLL to APL 0.000757 0.056 0.000491 0.008 0.000415 0.043
U-RLL to FEL 0.000092 0.007 0.001437 0.023 0.001396 0.145
U-RLL to GEL 0.000555 0.041 0.000598 0.010 0.000860 0.089
Total 0.012922 0.958 0.061074 0.977 0.008016 1.000
Reducing the regional eco-environment APL to OEL 0.000268 0.035 0.000532 0.030 0.000655 0.023
APL to IPL 0.000720 0.093 0.000893 0.050 0.001559 0.014
APL to U-RLL 0.003111 0.401 0.013782 0.776 0.013350 0.517
FEL to APL 0.001274 0.164 0.000585 0.033 0.002500 0.124
FEL to IPL 0.000005 0.001 0.000373 0.021 0.000478 0.014
FEL to U-RLL 0.000475 0.061 0.000801 0.045 0.001788 0.143
GEL to APL 0.001752 0.226 0.000191 0.011 0.000677 0.029
GEL to U-RLL 0.000059 0.008 0.000349 0.020 0.000860 0.094
Total 0.007664 0.987 0.017507 0.986 0.021867 1.000
Bakker MM , Govers G , Kosmas C , et al ., 2005. Soil erosion as a driver of land use change. Agriculture Ecosystems and Environment, 105(3): 467-481. DOI: 10.1016/j.agee. 2004.07.009 .
doi: 10.1016/j.agee. 2004.07.009
Barrett CB , Travis AJ , Dasgupta P , 2011. On biodiversity conservation and poverty traps. Proceedings of the National Academy of Sciences, 108: 13907-13912. DOI: 10.1073/pnas.1011521108 .
doi: 10.1073/pnas.1011521108
Cai EX , Jing Y , Liu YL , et al ., 2018. Spatial-temporal patterns and driving forces of ecological-living-production land in Hubei Province, Central China. Sustainability, 10(1): 66-80. DOI: 10.3390/su10010066 .
doi: 10.3390/su10010066
Chu D , Zhang YL , Zheng D , 2005. Land use change scenario in Lhasa district using Markov chain model. Geographical Research, 24(6): 869-877. (in Chinese)
Chu D , Zhang YL , Zheng D , 2006. Land use change in Lhasa area, Tibet from 1990 to 2000. Acta Geographica Sinica, 61(10): 1075-1083. (in Chinese)
Cui J , Zang SY , 2013. Regional disparities of land use changes and their eco-environmental effects in Harbin-Daqing-Qiqihar Industrial Corridor. Geographical Research, 32(5): 848-856. DOI: 10.11821/yj2013050008 .
doi: 10.11821/yj2013050008
Dang LJ , Xu Y , Gao Y , 2014. Assessment method of functional land use classification and spatial system: A case study of Yangou Watershed. Research of Soil and Water Conservation, 21(5): 193-197. (in Chinese)
Fan J, 2015. Draft of major function oriented zoning of China. Acta Geographica Sinica, 70(2): 186-201. DOI: 10.11821/dlxb201502002 .
doi: 10.11821/dlxb201502002
Fu Y , Xiao JS , Xiao RX , et al ., 2009. Analysis and simulation prediction on LUCC of Xining city based on RS and GIS. Transactions of the CSAE, 25(7): 211-218. DOI: 10.3969/j.issn.1002-6819.2009.07.039 .
doi: 10.3969/j.issn.1002-6819.2009.07.039
Gu SZ , Hu YG , Zhou H , 2013. Ecological civilization construction: Scientific connotation and basic paths. Resources Science, 35(1): 2-13. (in Chinese)
Han Z , Song W , Deng XZ , 2016. Responses of ecosystem service to land use change in Qinghai Province. Energies, 9(4): 303-318. DOI: 10.3390/en9040303 .
doi: 10.3390/en9040303
Hoyos LE, Cabido MR , Cingolani AM , 2018. A multivariate approach to study drivers of land-cover changes through remote sensing in the dry chaco of Argentina. International Journal of Geo-Information, 7(5): 170-184. DOI: 10.3390/ijgi7050170 .
doi: 10.3390/ijgi7050170
Jia ZM , Ma BR , Zhang J , et al ., 2018. Simulating spatial-temporal changes of land-use based on ecological redline restrictions and landscape driving factors: A case study in Beijing. Sustainability, 10(4): 1299-1316. DOI: 10.3390/su10041299 .
doi: 10.3390/su10041299
Jiang B , Bai Y , Wong CP , et al ., 2019. China's ecological civilization program-Implementing ecological redline policy. Land Use, 81: 111-114. DOI: 10.1016/j.landusepol.2018. 10.031 .
doi: 10.1016/j.landusepol.2018. 10.031
Li WS , Li JF , Yao Y , et al ., 2016. Consolidation division of rural residential areas based on reconstruction of production, living and ecology space: A case study of Guandang Town of Shayang County in Jingzhou City of Hubei Province. Areal Research and Development, 35(1): 139-143. (in Chinese)
Li XW , Fang CL , Huang JC , 2003. The urban land use tranformations and associated effects on eco-enviroment in northwest China arid region: a case study in Hexi region, Gansu Province. Quaternary Sciences, 23(3): 280-290. (in Chinese)
Li YC , Liu CM , Yu JJ , 2006. Trade-off of conflict between wetland protection and farmland reclamation in the Sanjiang Plain, Heilongjiang Province. Journal of Beijing Forestry University, 28(1): 39-42. (in Chinese)
Liang X , Liu XP , Li X , et al ., 2018. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landscape and Urban Planning, 177: 47-63. DOI: 10.1016/j.landurbplan.2018.04.016 .
doi: 10.1016/j.landurbplan.2018.04.016
Liu C , Liu JC , 2007. Influences of grain for green project on food security in China. Journal of Beijing Forestry University (Social Sciences), 6(4): 42-47. (in Chinese)
Liu JL, Liu YS, Li YR, 2017a. Classification evaluation and spatial-temporal analysis of "production-living-ecological" spaces in China. Acta Geographica Sinica, 72(7): 1290-1304. DOI: 10.11821/dlxb201707013 .
doi: 10.11821/dlxb201707013
Liu XP , Liang X , Xu XC , et al ., 2017b. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling Human and Natural Effects. Landscape and Urban Plan, 168: 94-116. DOI: 10.1016/j.landurbplan.2017.09.019 .
doi: 10.1016/j.landurbplan.2017.09.019
Mendelsohn R , Dinar A , 1999. Climate change, agriculture, and developing countries: Does adaptation matter? The World Bank Research Observer, 14(2): 277-293. DOI: 10. 1093/wbro/14.2.277 .
doi: 10. 1093/wbro/14.2.277
Pan L , Shan TZ , Tang ZY , 2014. Urban layout research base the integration theory of production, life and ecology: Wenzhou example. Planners, 30 (S3): 265-270. (in Chinese)
Pradhan P , Lüdeke MKB , Reusser DE , et al ., 2014. Food self-sufficiency across scales: How local can we go? Environmental Science and Technology, 48(16): 9463-9470. DOI: 10.1021/es5005939 .
doi: 10.1021/es5005939
Schluessel V , Bennett MB , Bleckmann H , et al ., 2008. Morphometric and ultrastructural comparison of the olfactory system in elasmobranchs: the significance of structure-function relationships based on phylogeny and ecology. Journal of Morphology, 269(11): 1365-1386. DOI: 10.1002/jmor. 10661 .
doi: 10.1002/jmor. 10661
Tan Y , Xu H , Zhang X , 2016. Sustainable urbanization in China: A comprehensive literature review. Cities, 55: 82-93. DOI: 10.1016/j.cities.2016.04.002 .
doi: 10.1016/j.cities.2016.04.002
Verstegen JA , Karssenberg D , van der Hilst F , et al ., 2016. Detecting systemic change in a land use system by Bayesian data assimilation. Environmental Modelling and Software, 75: 424-438. DOI: 10.1016/j.envsoft.2015.02.013 .
doi: 10.1016/j.envsoft.2015.02.013
Xu J , Zhou YK , Jin XB , et al ., 2007. Discussing virgin land classification subsystem based on the protection of the eco-environment. Resources Science, 29(2): 137-141. (in Chinese)
Yan YC , Liu XP , Wang FY , et al ., 2017. Assessing the impacts of urban sprawl on net primary productivity using fusion of Landsat and MODIS data. Science of the Total Environment, 613: 1417-1429. DOI: 10.1016/j.scitotenv.2017. 09.139 .
doi: 10.1016/j.scitotenv.2017. 09.139
Yang QK , Duan XJ , Wang L , et al ., 2017. Land use transformation based on ecological-production-living spaces and associated eco-environment effects: A case study in the Yangtze River Delta. Scientia Geographica Sinica, 37(1): 1-10. DOI: 10.13249/j.cnki.sgs.2018.01.011 .
doi: 10.13249/j.cnki.sgs.2018.01.011
Yu C , Wang ZQ , Yang J , et al ., 2015. Coupling relationships of land consolidation and reconstruction of rural "production-living-ecological" spaces. Jiangsu Agricultural Sciences, 43 (7): 447-451. (in Chinese)
Yue J , Zhang XM , 2003. A discussion on the classification of land use in China. Arid Land Geography, 26(1): 78-88. DOI: 10.13826/j.cnki.cn65-1103/x.2003.01.015 .
doi: 10.13826/j.cnki.cn65-1103/x.2003.01.015
Zhang CG , Fang CL , 2002. Driving mechanism analysis of ecological-economic-social capacity interactions in oasis systems of arid lands. Journal of Natural Resources, 17(2): 181-187. DOI: 10.11849/zrzyxb.2002.02.009 .
doi: 10.11849/zrzyxb.2002.02.009
Zhang HQ , Xu EQ , Zhu HY , 2015. An ecological-living-industrial land classification system and its spatial distribution in China. Resources Science, 37(7): 1332-1338. (in Chinese)
Zhang HQ , Xu EQ , Zhu HY , 2017. Ecological-Living-Productive Land Classification System in China. Journal of Resources and Ecology, 8(2):121-128. DOI: 10.5814/j.issn.1674-764x.2017.02.002 .
doi: 10.5814/j.issn.1674-764x.2017.02.002
Zhang Y, 2005. Multiple-use forestry vs. forestland-use specialization revisited. Forest Policy and Economics, 7(2):143-156. DOI: 10.1016/S1389-9341(03)00028-5 .
doi: 10.1016/S1389-9341(03)00028-5
Zhang YL , Li XB , Fu XF , et al ., 2000. Urban land use change in Lhasa. Acta Geographica Sinica, 55(4): 395-406. (in Chinese)
Zhou D , Xu JC , Lin ZL , 2017. Conflict or coordination? Assessing land use multi-functionalization using production-living-ecology analysis. Science of the Total Environment, 577: 136-147. DOI: 10.1016/j.scitotenv.2016.10.143 .
doi: 10.1016/j.scitotenv.2016.10.143
Zhu H , Li XB , 2003. Discussion on the index method of regional land use change. Acta Geographica Sinica, 8(5): 643-650. DOI: 10.11821/xb200305001 .
doi: 10.11821/xb200305001
[1] Yong Chen,Tao Wang,LiHua Zhou,Rui Wang. Industrialization model of enterprises participating in ecological management and suggestions: A case study of the Hobq Model in Inner Mongolia [J]. Sciences in Cold and Arid Regions, 2018, 10(4): 286-292.
[2] YuQiang Li, JianPeng Zhang, XueYong Zhao, TongHui Zhang, YuLin Li, XinPing Liu, YinPing Chen. Comparison of soil physico-chemical properties under different land-use and cover types in northeastern China's Horqin Sandy Land [J]. Sciences in Cold and Arid Regions, 2016, 8(6): 495-506.
[3] JiaLi Xie, ChangZhen Yan, ZhiXiang Lu, Sen Li. Remote-sensing data reveals the response of soil erosion intensity to land use change in Loess Plateau,China [J]. Sciences in Cold and Arid Regions, 2016, 8(4): 325-333.
[4] Pei Liu, PeiJun Du, RuiMei Han, Chao Ma, YouFeng Zou. Modeling spatial and temporal change of soil erosion based on multi-temporal remotely sensed data [J]. Sciences in Cold and Arid Regions, 2015, 7(6): 702-708.
[5] JinChang Li, HaiXia Liu, Yong Liu, ZhiZhu Su, ZiQiang Du. Land use and land cover change processes in China's eastern Loess Plateau [J]. Sciences in Cold and Arid Regions, 2015, 7(6): 722-729.
[6] JinChang Li, HaiXia Liu, ZhiZhu Su, Yong Liu, YongGang Yang. Characterizing changes in ecosystem service values in China's eastern Loess Plateau [J]. Sciences in Cold and Arid Regions, 2015, 7(3): 272-281.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!