Sciences in Cold and Arid Regions ›› 2020, Vol. 12 ›› Issue (2): 104–118.doi: 10.3724/SP.J.1226.2020.00104.

• • 上一篇    下一篇

  

  • 收稿日期:2019-06-11 接受日期:2019-10-08 出版日期:2020-04-30 发布日期:2020-04-27

The heterogeneity of hydrometeorological changes during the period of 1961-2016 in the source region of the Yellow River, China

ZhiXiang Lu1,Qi Feng1(),SongBing Zou1,JiaLi Xie2,3,ZhenLiang Yin1,Fang Li1,3   

  1. 1.Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    2.Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    3.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-06-11 Accepted:2019-10-08 Online:2020-04-30 Published:2020-04-27
  • Contact: Qi Feng E-mail:qifeng@lzb.ac.cn

Abstract:

Runoff in the source region of a river makes up most of water resources in the whole basin in arid and semi-arid areas. It is very important for water resources management to timely master the latest dynamic changes of the runoff and quantitatively reveal its main driving factors. This paper aims to discover the variation heterogeneity of runoff and the impacts of climatic factors on this runoff in the source region of the Yellow River (SRYR) in China from 1961 to 2016. We divided SRYR into four sub-regions, and analyzed changes of their contributions to total runoff in SRYR. We also revealed the impacts of precipitation, temperature and potential evapotranspiration on runoff in each sub-region by constructing the regression relationships between them at multiple temporal scales. The changes of runoff in the four sub-regions and their contributions to the total runoff were not exactly consistent. The climatic variables’ changes also have heterogeneity, and runoff was mainly affected by precipitation compared to influences of temperature or potential evapotranspiration. Their impacts on runoff have spatiotemporal heterogeneity and can be reflected by very significant-linear regression equations. It provided a simple method to predict headwater runoff for better water management in the whole basin.

Key words: source region of the Yellow River, hydrometeorology, spatiotemporal variation, runoff contribution, heterogeneity

"

"

"

RegionDEM (m)Mean altitude (m)Area (km2)Hydrological stationMeteorological station
D14,210-5,2454,50220,930HHYMaduo
D23,941-5,3544,42624,089HHY, JMMaduo, Dari
D33,406-5,3283,88141,029JM, MQDari, Hongyuan, Jiuzhi, Ruoergai
D42,680-6,2483,95335,924MQ, TNHGuoluo, Xinghai, Guinan

"

"

"

"

"

ItemRegionEquationR2Significance FP-value of independent variables
R&P, TD1R=0.45P-0.29T0.220.00130.0007; 0.0254
D2R=0.71P-0.15T0.470.00000.0000; 0.1460
D3R=0.87P-0.37T0.810.00000.0000; 0.0000
D4R=0.73P-0.25T0.580.00000.0000; 0.0065
R&P, ET0D1R=0.45P-0.29ET00.260.00030.0019; 0.0056
D2R=0.69P-0.27ET00.520.00000.0000; 0.0073
D3R=0.8P-0.41ET00.840.00000.0000; 0.0000
D4R=0.62P-0.28ET00.590.00000.0000; 0.0041

"

"

ItemRegionEquationR2Significance FP-value of independent variables
R&P, TD1R=0.46P-16.7T-171.760.160.7700.58; 0.51
D2R=0.22P-6.9T+30.640.080.8800.68; 0.65
D3R=0.84P-37.2T-288.250.940.0160.023; 0.016
D4R=1.28P-28T-405.310.650.2000.12; 0.20
R&P, ET0D1R=0.5P-0.22ET0+190.680.290.6000.44; 0.36
D2R=0.51P-0.19ET0+196.220.270.6200.40; 0.37
D3R=0.9P-0.48ET0+403.920.930.0180.02; 0.018
D4R=1.25P-0.47ET0+398.170.680.1800.11; 0.17

"

"

"

ItemRegionEquationR2Significance FP-value of independent variables
R&P, TD1R=0.006P+0.085T+3.060.220.00020.74; 0.14
D2R=0.16P+0.33T+6.490.820.00000.0000; 0.03
D3R=0.27P-0.09T+5.240.720.00000.0000; 0.81
D4R=0.2P-0.0052T+5.840.740.00000.0000; 0.98
R&P, ET0D1R=0.01P+0.03ET0-10.270.00000.31; 0.001
D2R=0.19P+0.11ET0-8.30.840.00010.0000; 0.0001
D3R=0.24P-0.14ET0-11.180.740.00000.0000; 0.05
D4R=0.19P-0.05ET0-10.740.00000.0000; 0.11
Allen R, Pereira L, Raes D, et al., 1998. Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO-Food and Agriculture Organisation of the United Nations, Rome (http://www. fao.org/docrep) ARPAV (2000), La caratterizzazione climatica della Regione Veneto, Quaderni per. Geophysics, 156: 178.
Beniston M, Stoffel M, 2014. Assessing the impacts of climatic change on mountain water resources. Science of The Total Environment, 493: 1129-1137. DOI: 10.1016/j.scitotenv. 2013.11.122.
doi: 10.1016/j.scitotenv. 2013.11.122
Blöschl G, Sivapalan M, Wagener T, et al., 2013. Runoff prediction in ungauged basins.Synthesis across processes, places and scales. Cambridge: Cambridge University Press. New York.
Cao J, Qin D, Kang E, et al., 2006. River discharge changes in the Qinghai-Tibet Plateau. Chinese Science Bulletin, 51(5): 594-600.
Cuo L, Zhang Y, Gao Y, et al., 2013. The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China. Journal of Hydrology, 502: 37-52. DOI: 10.1016/j.jhydrol.2013.08.003.
doi: 10.1016/j.jhydrol.2013.08.003
Guo D, Westra S, Maier HR, 2017. Sensitivity of potential evapotranspiration to changes in climate variables for different Australian climatic zones. Hydrology and Earth System Sciences, 21(4): 2107-2126. DOI: 10.5194/hess-21-2107-2017, 2017.
doi: 10.5194/hess-21-2107-2017
Hu Y, Maskey S, Uhlenbrook S, et al., 2011. Streamflow trends and climate linkages in the source region of the Yellow River, China. Hydrological Processes, 25(22): 3399-3411. DOI: 10.5194/hess-17-2501-2013.
doi: 10.5194/hess-17-2501-2013
Lan Y, Zhao G, Zhang Y, et al., 2010. Response of runoff in the source region of the Yellow River to climate warming. Quaternary International, 226(1): 60-65.
Lan Y, Zhu Y, Liu G, et al., 2016. Study of the seasonal characteristics and regional differences of climate change in source regions of the Yellow River. Journal of Glaciology and Geocryology, 38(3): 741-749. DOI: 10.1016/j.quaint. 2010.03.006.
doi: 10.1016/j.quaint. 2010.03.006
Li C, Wu P, Li X, et al., 2017. Spatial and temporal evolution of climatic factors and its impacts on potential evapotranspiration in Loess Plateau of Northern Shaanxi, China. Science of the Total Environment, 589: 165-172. DOI: 10.1016/j.scitotenv.2017.02.122.
doi: 10.1016/j.scitotenv.2017.02.122
Liu W, Wang L, Sun F, et al., 2018. Snow hydrology in the upper Yellow River Basin under climate change: A Land Surface Modeling Perspective. Journal of Geophysical Research: Atmospheres, 123(22): 12676-12691 DOI: 10. 1029/2018JD028984.
doi: 10. 1029/2018JD028984
Liu X, Zhang X, Tang Q, et al., 2014. Effects of surface wind speed decline on modeled hydrological conditions in china. Hydrology and Earth System Sciences, 18(8): 2803-2813. DOI: 10.5194/hess-18-2803-2014, 2014.
doi: 10.5194/hess-18-2803-2014
Liu Y, Pereira LS, Teixeira JL, et al., 1997. Update definition and computation of reference evapotranspiration comparison with former method. Journal of Hydraulic Engineering, (6): 27-33.
McMillan H, Montanari A, Cudennec C, et al., 2016. Panta Rhei 2013-2015: global perspectives on hydrology, society and change. Hydrological Sciences Journal, 61(7): 1174-1191. DOI: 10.1080/02626667.2016.1159308.
doi: 10.1080/02626667.2016.1159308
Meng F, Su F, Yang D, et al., 2016. Impacts of recent climate change on the hydrology in the source region of the Yellow River basin. Journal of Hydrology: Regional Studies, 6: 66-81. DOI: 10.1016/j.ejrh.2016.03.003.
doi: 10.1016/j.ejrh.2016.03.003
Ragettli S, Pellicciotti F, Immerzeel WW, et al., 2015. Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model. Advances in Water Resources, 78: 94-111.
Ran Y, Li X, Cheng G, 2018. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau. The Cryosphere, 12(2): 595-608. DOI: 10.5194/tc-12-595-2018.
doi: 10.5194/tc-12-595-2018
Savenije HHG, 2000. Water scarcity indicators; the deception of the numbers. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(3): 199-204. DOI: 10.1016/S1464-1909(00)00004-6.
doi: 10.1016/S1464-1909(00)00004-6
Tang Q, Oki T, Kanae S, et al., 2008. Hydrological cycles change in the Yellow River Basin during the last half of the Twentieth Century. Journal of Climate, 21(8): 1790-1806. DOI: 10.1175/2007JCLI1854.1.
doi: 10.1175/2007JCLI1854.1
Tang Y, Tang Q, Tian F, et al., 2013. Responses of natural runoff to recent climatic variations in the Yellow River basin, China. Hydrology and Earth System Sciences, 17(11): 4471-4480. DOI: 10.5194/hess-17-4471-2013.
doi: 10.5194/hess-17-4471-2013
Tian H, Lan Y, Wen J, et al., 2015. Evidence for a recent warming and wetting in the source area of the Yellow River (SAYR) and its hydrological impacts. Journal of Geographical Sciences, 25(6): 643-668. DOI: 10.1007/s11442-015-1194-7.
doi: 10.1007/s11442-015-1194-7
Wang S, Yan M, Yan Y, et al., 2012. Contributions of climate change and human activities to the changes in runoff increment in different sections of the Yellow River. Quaternary International, 282: 66-77. DOI: 10.1016/j.quaint. 2012. 07.011.
doi: 10.1016/j.quaint. 2012. 07.011
Yin Y, Tang Q, Liu X, et al., 2017. Water scarcity under various socio-economic pathways and its potential effects on food production in the yellow river basin. Hydrology and Earth System Sciences, 21(2): 791-804. DOI: 10.5194/hess-21-791-2017.
doi: 10.5194/hess-21-791-2017
Zheng H, Zhang L, Zhu R, et al., 2009. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin. Water Resources Research, 45(7): W00A19, DOI: 10.1029/2007WR006665.
doi: 10.1029/2007WR006665
Zhang L, Su F, Yang D, et al., 2013. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 118(15): 8500-8518. DOI: 10.1002/jgrd.50665.
doi: 10.1002/jgrd.50665
Zhang Y, Guan D, Jin C, et al., 2011. Analysis of impacts of climate variability and human activity on streamflow for a river basin in northeast China. Journal of Hydrology, 410(3): 239-247. DOI: 10.1016/j.jhydrol.2011.09.023.
doi: 10.1016/j.jhydrol.2011.09.023
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!