Sciences in Cold and Arid Regions ›› 2020, Vol. 12 ›› Issue (1): 34–46.doi: 10.3724/SP.J.1226.2020.00034.

• • 上一篇    

  

  • 收稿日期:2019-07-01 接受日期:2019-09-10 出版日期:2020-02-29 发布日期:2020-03-17

Soil-moisture dynamics and tree-water status in a Picea crassifolia forest, Qilian Mountains, China

Hu Liu1,2,Lin Li1,2,3,SiJia Wang1,2,3,QiYue Yang1,2,WenZhi Zhao1,2()   

  1. 1.Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Lanzhou, Gansu 730000, China
    2.Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    3.University of Chinese Academy of Sciences, Beijing 100029, China
  • Received:2019-07-01 Accepted:2019-09-10 Online:2020-02-29 Published:2020-03-17
  • Contact: WenZhi Zhao E-mail:zhaowzh@lzb.ac.cn

Abstract:

Landscapes of the mountainous regions in northwestern China comprise a unique pattern of vegetation, consisting of a mosaic of grassland and shrub-forest. Forests generally self-organize into ordered structures and coalesce into blocks on north-facing slopes or stripes along southeast-facing slopes, with Picea crassifolia being the most representative and dominant tree species. We investigated the tree-water status and soil-moisture dynamics at a forest site (Guantan) of the Qilian Mountains in northwest China. The 30-minute-interval measurements of tree-sap flow during the growing season of 2008 are presented, and the potential functional relations between tree transpiration and environmental factors are evaluated. Soil moisture and solar energy were identified as the most influential factors, explaining more than 70% of the variance in sap flow. Based on field measurements obtained at the forest site, a stochastic model of soil-moisture dynamics was tested; and the steady-state probability density functions (PDFs) of the long-term soil-moisture dynamics and static tree-water stress were estimated using the validated model and parameters. We found that the model reproduced measured soil moisture well, despite all the simplifying assumptions. The generated PDF of long-term soil moisture was relatively open, with middle to low average values; and the calculated density of the static tree-water stress at the forest site was largely concentrated between 0 and 0.6, suggesting a moderate water-stress situation in most cases. We argue that both water and energy are limiting factors for vegetation at the forest site. In addition, the tradeoff between reduced evapotranspiration (ET) from limited solar energy and increased soil-moisture availability may create a stressed but tolerable environment and, in turn, produce a relatively constant ecological niche favorable to Picea crassifolia growth.

Key words: sap flow, soil moisture, stochastic modeling, semiarid alpine ecosystem

"

"

PlotsSlopeAspectAltitude (m)Density (h/m2)Height (m)DBH (cm)Canopy gapLAI (m2/m2)
130°25°2,6551,3509.847.4168.98%0.4-1.5
227°30°2,8352,4759.447.1377.02%1.8-3.2
325°12°2,8892,2257.787.1380.34%2.4-2.8
421°3,0052,2007.047.2071.70%2.2-2.7
522°18°3,1068256.882.4957.01%1.8-2.4
634°355°3,2603755.212.4322.15%0.7-1.9

"

"

No.Stem diameter at breast height (mm)Canopy-base height (m)Height (m)Crown width (m)Sapwood radius (m)Bark depth (mm)Sapwood area (mm2)
115.14.613.83.43379,569
219.34.914.24.337718,710
336.35.716.24.840733,422

"

"

"

ParametersUnitsDescriptionValue
n-Soil porosity, Equation (2)0.77
ZrcmRoot-zone depth, Equation (2)60.00
sw-Wilting point, Equations (2, 3)0.19
s*-Point of incipient stomatal closure, Equations (2, 3)0.57
sfc-Field capacity, Equation (3)0.71
ΔmmCanopy-interception threshold1.00
k-Canopy-throughfall coefficient, Equation (3)0.85
Emaxmm/dayMaximal evapotranspiration rate3.90
αmmLong-term mean rainfall depth per event6.70
λ/dayLong-term rainfall frequency0.51
q-Measure of the nonlinearity, Equation (3)3.00*

"

"

"

Andersen LS, Yang GW, 2010. Recent Development of Small-scale River Basin Organizations in China and their Legal Framework. Proceedings of the 4th International Yellow River Forum on Ecological Civilization and River Ethics, 1: 246-252.
Buchmann N, 2002. Plant ecophysiology and forest response to global change. Tree Physiology, 22: 1177-1184. DOI: 10.1093/treephys/22.15-16.1177.
doi: 10.1093/treephys/22.15-16.1177
Caylor KK, Shugart HH, Rodriguez-Iturbe I, 2005. Tree canopy effects on simulated water stress in Southern African Savannas. Ecosystems, 8: 17-32. DOI: 10.1007/s10021-004-0027-9.
doi: 10.1007/s10021-004-0027-9
Chang X, Zhao W, Liu H, et al., 2014. Qinghai spruce (Picea crassifolia) forest transpiration and canopy conductance in the upper Heihe River Basin of arid northwestern China. Agricultural and Forest Meteorology, 198: 209-220. DOI: 10.1016/j.agrformet.2014.08.015.
doi: 10.1016/j.agrformet.2014.08.015
Daly E, Oishi AC, Porporato A, et al., 2008. A stochastic model for daily subsurface CO2 concentration and related soil respiration. Advances in Water Resources, 31: 987-994.
Gao Y, Chen F, Barlage M, et al., 2008. Enhancement of land surface information and its impact on atmospheric modeling in the Heihe River Basin, northwest China. Journal of Geophysical Reseaech, 113: D20S90. DOI: 10.1029/2008JD010359.
doi: 10.1029/2008JD010359
Gartner K, Nadezhdina N, Englisch M, et al., 2009. Sap flow of birch and Norway spruce during the European heat and drought in summer 2003. Forest Ecology and Management, 258(5): 590-599. DOI: 10.1016/j.foreco.2009.04.028.
doi: 10.1016/j.foreco.2009.04.028
Gordon R, Brown DM, Madani A, et al., 1999. An assessment of potato sap flow as affected by soil water status, solar radiation and vapour pressure deficit. Canadian Journal of Soil Science, 79(2): 245-253. DOI: 10.4141/S97-079.
doi: 10.4141/S97-079
Graham MH, 2003. Confronting multicollinearity in ecological multiple regression. Ecology, 84(11): 2809-2815. DOI: 10. 1890/02-3114.
doi: 10. 1890/02-3114
Granier A, 1987. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3(4): 309-320. DOI: 10.1093/treephys/3.4.309.
doi: 10.1093/treephys/3.4.309
He Z, Du J, Chen L, et al., 2018. Impacts of recent climate extremes on spring phenology in arid-mountain ecosystems in China. Agriculturaland Forest Meteorology, 260-261(2018): 31-40. DOI: 10.1016/j.agrformet.2018.05.022.
doi: 10.1016/j.agrformet.2018.05.022
Jarvis PG, McNaughton KG, 1986. Stomatal control of transpiration: scaling up from leaf to region. Advances in Ecological Research, 15: 1-49. DOI: 10.1016/s0065-2504(08)60119-1.
doi: 10.1016/s0065-2504(08)60119-1
Jones HG, 1992. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, 2nd ed. Cambridge University Press, New York.
Kang E, Cheng G, Song K, et al., 2005. Simulation of energy and water balance in Soil-Vegetation-Atmosphere Transfer system in the mountain area of Heihe River Basin at Hexi Corridor of northwest China. Science in China Series D Earth Sciences, 48(4): 538-548. DOI: 10.1360/02yd0428.
doi: 10.1360/02yd0428
Kang E, Lu L, Xu Z, 2007. Vegetation and carbon sequestration and their relation to water resources in an inland river basin of Northwest China. Journal of Environmental Management, 85(3): 702-710. DOI: 10.1016/j.jenvman.2006. 09.007.
doi: 10.1016/j.jenvman.2006. 09.007
Kumagai T, Yoshifuji N, Tanaka N, et al., 2009. Comparison of soil moisture dynamics between a tropical rain forest and a tropical seasonal forest in Southeast Asia: Impact of seasonal and year-to-year variations in rainfall. Water Resources Research, 45(4): W04413. DOI: 10.1029/2008WR007307.
doi: 10.1029/2008WR007307
Laio F, Porporato A, Ridolfi L, et al., 2001. Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress II. Probabilistic soil moisture dynamics. Advances in Water Resources, 24(7): 707-723. DOI: 10.1016/S0309-1708(01)00005-7.
doi: 10.1016/S0309-1708(01)00005-7
Laio F, Tamea S, Ridolfi L, et al., 2009. Ecohydrology of groundwater-dependent ecosystems: 1. Stochastic water table dynamics. Water Resources Research, 45(5): W05419. DOI: 10.1029/2008WR007292.
doi: 10.1029/2008WR007292
Liang E, Shao X, Eckstein D, et al., 2006. Topography-and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau. Forest Ecology and Management, 236(2-3): 268-277. DOI: 10.1016/j.foreco.2006.09.016.
doi: 10.1016/j.foreco.2006.09.016
Liu H, Zhao W, He Z, 2013. Self-organized vegetation patterning effects on surface soil hydraulic conductivity: A case study in the Qilian Mountains, China. Geoderma, 192(1): 362-367. DOI: 10.1016/j.geoderma.2012.08.008.
doi: 10.1016/j.geoderma.2012.08.008
Liu H, Zhao W, He Z, et al., 2015. Soil moisture dynamics across landscape types in an arid inland river basin of Northwest China. Hydrological Process, 29: 3328-3341. DOI: 10.1002/hyp.10444.
doi: 10.1002/hyp.10444
Liu J, Schweighoefer S, 2011. A new type of sap flow sensor. 8th international Workshop on Sap Flow.
Lopez ML, Shirota T, Iwahana G, et al., 2010. Effect of increased rainfall on water dynamics of larch (Larix cajanderi) forest in permafrost regions, Russia: an irrigation experiment. Journal of Forest Research, 15(6): 365-373. DOI: 10.1007/s10310-010-0196-7.
doi: 10.1007/s10310-010-0196-7
Mackay DS, Ewers BE, Loranty MM, et al., 2010. On the representativeness of plot size and location for scaling transpiration from trees to a stand. Journal of Geophysical Research-Biogeosciences, 115: G02016.. DOI: 10.1029/2009JG001092.
doi: 10.1029/2009JG001092
Manfreda S, Fiorentino M, 2008. A stochastic approach for the description of the water balance dynamics in a river basin. Hydrological and Earth system sciences, 12: 1189-1200. DOI: 10.5194/hess-12-1189-2008.
doi: 10.5194/hess-12-1189-2008
Mellander PE, Stahli M, Gustafsson D, et al., 2006. Modelling the effect of low soil temperatures on transpiration by Scots pine. Hydrological Processes, 20(9): 1929-1944. DOI: 10.1002/hyp.6045.
doi: 10.1002/hyp.6045
Miller GR, Baldocchi DD, Law BE, et al., 2007. An analysis of soil moisture dynamics using multi-year data from a network of micrometeorological observation sites. Advances in Water Resources, 30(5): 1065-1081. DOI: 10.1016/j.advwatres.2006.10.002.
doi: 10.1016/j.advwatres.2006.10.002
Moghadas S, 2008. Long-term Water Balance of an Inland River Basin in an Arid Area, North-Western China. Department of Building and Environmental Technology, Lund University, Lund, Sweden.
Nadezhdina N, 1999. Sap flow index as an indicator of plant water status. Tree Physiology, 19(13): 885-891. DOI: 10. 1093/treephys/19.13.885.
doi: 10. 1093/treephys/19.13.885
Nan Z, Zhao Z, Zhao C, et al., 2010. Estimating leaf area index of Qinghai spruce forest in Qilian Mountain using QuickBird satellite data, in: International Geoscience and Remote Sensing Symposium (IGARSS). 2010 IEEE International Geoscience and Remote Sensing Symposium, 2055-2058. DOI: 10.1109/IGARSS.2010.5650872.
doi: 10.1109/IGARSS.2010.5650872
Nunn AJ, Cieslik S, Metzger U, et al., 2010. Combining sap flow and eddy covariance approaches to derive stomatal and non-stomatal O-3 fluxes in a forest stand. Environmental Pollution, 158(6): 2014-2022. DOI: 10.1016/j.envpol. 2009.11.034. Epub 2009 Dec 28.
doi: 10.1016/j.envpol. 2009.11.034. Epub 2009 Dec 28
Oishi AC, Oren R, Stoy PC, 2008. Estimating components of forest evapotranspiration: A footprint approach for scaling sap flux measurements. Agricultural and Forest Meteorology, 148(11): 1719-1732. DOI: 10.1016/j.agrformet.2008. 06.013.
doi: 10.1016/j.agrformet.2008. 06.013
Paltineanu IC, Starr JL, 1997. Real-time Soil Water Dynamics Using Multisensor Capacitance Probes: Laboratory Calibration. Soil Science Society of America Journal, 61(6): 1576-1585. DOI: 10.2136/sssaj1997.03615995006100060006x.
doi: 10.2136/sssaj1997.03615995006100060006x
Porporato A, Laio F, Ridolfi L, et al., 2001. Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: III Vegetation water stress. Advances in Water Resources, 24(7): 725-744. DOI: 10. 1016/S0309-1708(01)00006-9.
doi: 10. 1016/S0309-1708(01)00006-9
Porporato A, Laio F, Ridolfi L, et al., 2003. Soil moisture and plant stress dynamics along the Kalahari precipitation gradient. Journal of Geophysical Research-Atmospheres, 108 D3): 4127. DOI: 10.1029/2002JD002448.
doi: 10.1029/2002JD002448
Regalado CM, Ritter A, 2007. An alternative method to estimate zero flow temperature differences for Granier's thermal dissipation technique. Tree Physiology, 27(8): 1093-1102. DOI: 10.1093/treephys/27.8.1093.
doi: 10.1093/treephys/27.8.1093
Reich PB, Ellsworth DS, Walters MB, et al., 1999. Generality of leaf trait relationships: A test across six biomes. Ecology, 80: 1955-1969. DOI: 10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2.
doi: 10.1890/0012-9658(1999)080[1955:GOLTRA]2.0.CO;2.
Repo T, Sutinen S, Nöjd P, et al., 2007. Implications of delayed soil thawing on trees: A case study of a Picea abies stand. Scandinavian Journal of Forest Research, 22(2): 118-127. DOI: 10.1080/02827580701231795.
doi: 10.1080/02827580701231795
Roberts J, 2000. Influence of physical and physiological characteristics of vegetation on their hydrological response. Hydrological Processes, 14(16-17): 2885-2901. DOI: 10.1002/1099-1085(200011/12)14:16/17<2885::AID-HYP125>3.0.CO;2-Z.
doi: 10.1002/1099-1085
Rodríguez-Iturbe I, Porporato A, 2007. Ecohydrology of Water-controlled Ecosystems: Soil Moisture and Plant Dynamics. Cambridge University Press, London.
Scanlon TM, Caylor KK, Manfreda Salvatore, et al., 2005. Dynamic response of grass cover to rainfall variability: implications for the function and persistence of savanna ecosystems. Advances in Water Resources, 28(3): 291-302. DOI: 10.1016/j.advwatres.2004.10.014.
doi: 10.1016/j.advwatres.2004.10.014
Stöhr A, Lösch R, 2004. Xylem sap flow and drought stress of Fraxinus excelsior saplings. Tree Physiology, 24(2): 169- 180. DOI: 0.1093/treephys/24.2.169.
doi: 0.1093/treephys/24.2.169
Tian F, Zhao C, Feng Z, et al., 2011. Simulating evapotranspiration of Qinghai spruce (Picea crassifolia) forest in the Qilian Mountains, northwestern China. Journal of Arid Environments, 75(7): 648-655. DOI: 10.1016/j.jaridenv.2011. 02.001.
doi: 10.1016/j.jaridenv.2011. 02.001
Tian Q, He Z, Xiao S, et al., 2018. Growing Season Stem Water Status Assessment of Qinghai Spruce through the Sap Flow and Stem Radial Variations in the Qilian Mountains of China. Forests, 9(1): 2. DOI: 10.3390/f9010002.
doi: 10.3390/f9010002
Van Wijk MT, Rodriguez-Iturbe I, 2002. Tree-grass competition in space and time: Insights from a simple cellular automata model based on ecohydrological dynamics. Water Resources Research, 38(9): 181-185. DOI: 10.1029/2001WR000768.
doi: 10.1029/2001WR000768
Vico G, Porporato A, 2010. Traditional and microirrigation with stochastic soil moisture. Water Resources Research, 46: W03509. DOI: 10.1029/2009WR008130.
doi: 10.1029/2009WR008130
Wang B, Chen T, Xu G, et al., 2018. Anthropogenic-management could mitigate declines in growth and survival of Qinghai spruce (Picea crassifolia) in the east Qilian Mountains, northeast Tibetan Plateau. Agricultural and Forest Meteorology, 250-251(2018): 118-126. DOI: 10.1016/j.agrformet.2017.12.249.
doi: 10.1016/j.agrformet.2017.12.249
Wang J, Yu P, Wang Y, 2008. Forest Ecohydrological Processes Research in Qilian Mountain (In Chinese). Science Press, Beijing.
Xu Z, Zhao C, Feng Z, et al., 2009. The impact of climate change on potential distribution of species in semi-arid region: A case study of Qinghai spruce (Picea crassifolia) in Qilian Mountain, Gansu Province, China, in: International Geoscience and Remote Sensing Symposium (IGARSS). 2009 IEEE International Geoscience and Remote Sensing Symposium, 3: 412-415. DOI: 10.1109/IGARSS.2009. 5417792.
doi: 10.1109/IGARSS.2009. 5417792
Yang G, Xiao D, Zhou L, et al., 2005. Hydrological effects of forest landscape patterns in the Qilian Mountains-A case study of two catchments in northwest China. Mountain Research and Development, 25: 262-268. DOI: 10.1659/0276-4741(2005)025[0262:HEOFLP]2.0.CO;2.
doi: 10.1659/0276-4741(2005)025[0262:HEOFLP]2.0.CO;2.
Yang J, He Z, Du J, et al., 2017. Soil water variability as a function of precipitation, temperature, and vegetation: a case study in the semiarid mountain region of China. Environmental Earth Sciences, 76(5): 206. DOI: 10.1007/s12665-017-6521-0.
doi: 10.1007/s12665-017-6521-0
Zhao C, Jia Y, Cheng G, et al., 2007. Estimation of leaf area index of Qinghai spruce (Picea crassifolia) forest using remote sensing in Qilian Mountains, northwest China. Proceedings of 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, pp. 1428. DOI: 10.1109/IGARSS.2007.4423075.
doi: 10.1109/IGARSS.2007.4423075
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!