Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (5): 408-418.doi: 10.3724/SP.J.1226.2021.21044.
XuFeng Lu,Feng Zhang(),KangWei Tang,DeCheng Feng(
)
Dong YK, 2021. High-performance distributed Brillouin optical fiber sensing. Photonic Sensors, 11(1): 69-90. DOI: 10.1007/s13320-021-0616-7.
doi: 10.1007/s13320-021-0616-7 |
|
Fattoev UB, Brushkov AV, Koshurnikov AV, et al., 2021. The frost heaving and heave properties of soils on the projected Moscow-Kazan railway. Moscow University Geology Bulletin, 76: 343-351. DOI: 10.3103/S0145875221030042.
doi: 10.3103/S0145875221030042 |
|
Geng L, Ling XZ, Tang L, et al., 2017. A mathematical approach to evaluate maximum frost heave of unsaturated silty clay. Sciences in Cold and Arid Regions, 9(5): 438-446. DOI: 10.3724/SP.J.1226.2017.00438.
doi: 10.3724/SP.J.1226.2017.00438 |
|
Groenevelt PH, Grant CD, 2013. Heave and heaving pressure in freezing soils: A Unifying Theory. Vadose Zone Journal, 12(1): 1-11. DOI: 10.2136/vzj2012.0051.
doi: 10.2136/vzj2012.0051 |
|
Harlan RL, 1973. Analysis of coupled heat-fluid transport in partially frozen soil. Water Resources Research, 9(5): 1314-1323. DOI: 10.1029/WR009i005p01314.
doi: 10.1029/WR009i005p01314 |
|
Hirose G, Ito Y, 2017. Experimental estimation of permeability of freeze-thawed soils in artificial ground freezing. Procedia Engineering, 189: 332-337. DOI: 10.1016/j.proeng.2017.05.053.
doi: 10.1016/j.proeng.2017.05.053 |
|
Huang L, Sheng Y, Wu JC, et al., 2020. Experimental study on frost heaving behavior of soil under different loading paths. Cold Regions Science and Technology, 169: 102905. DOI: 10.1016/j.coldregions.2019.102905.
doi: 10.1016/j.coldregions.2019.102905 |
|
Ji YK, Zhou GQ, Hall MR, 2019. Frost heave and frost heaving-induced pressure under various restraints and thermal gradients during the coupled thermal-hydro processes in freezing soil. Bulletin of Engineering Geology and the Environment, 78(5): 3671-3683. DOI: 10.1007/s10064-018-1345-z
doi: 10.1007/s10064-018-1345-z |
|
Konrad J, Morgenstern NR, 1980. Mechanistic theory of ice lens formation in fine-grained soils. Can Geotech J., 17(4): 473-486. DOI: 10.1016/0148-9062(81)91059-7.
doi: 10.1016/0148-9062(81)91059-7 |
|
Liu JY, Cen GP, Chen Y, 2017. Study on frost heaving characteristics of gravel soil pavement structures of airports in Alpine regions. RSC Advances, 7(40): 24633-24642. DOI: 10.1039/c7ra02151h.
doi: 10.1039/c7ra02151h |
|
Liu LQ, Mao XS, Wu Q, et al., 2019. Mechanism of groundwater migration in the subgrade in a seasonally frozen soil area. Journal of Cold Regions Engineering, 33(4): 06019001. DOI: 10.1061/(ASCE)CR.1943-5495.0000196.
doi: 10.1061/(ASCE)CR.1943-5495.0000196 |
|
Luo XX, Ma QG, Niu FJ, et al., 2019. Experimental and numerical analyses of freezing behavior of an embankment in cold regions. Mathematical Problems in Engineering, 2019: 1437904. DOI: 10.1155/2019/1437904.
doi: 10.1155/2019/1437904 |
|
Miao Q, Niu FJ, Lin ZJ, et al., 2020. Comparing frost heave characteristics in cut and embankment sections along a high-speed railway in seasonally frozen ground of Northeast China. Cold Regions Science and Technology, 170: 102921. DOI: 10.1016/j.coldregions.2019.102921.
doi: 10.1016/j.coldregions.2019.102921 |
|
Miller RD, 1972. Freezing and heaving of saturated and unsaturated soils. Highway Research Record, 393: 1-11. DOI: 10.1021/ba-1972-0110.ap001.
doi: 10.1021/ba-1972-0110.ap001 |
|
Ming F, Li DQ, 2015. Experimental and theoretical investigations on frost heave in porous media. Mathematical Problems in Engineering, 2015: 198986. DOI: 10.1155/2015/198986.
doi: 10.1155/2015/198986 |
|
Niu FJ, Zheng H, Li AY, 2020. The study of frost heave mechanism of high-speed railway foundation by field-monitored data and indoor verification experiment. Acta Geotechnica, 15(3): 581-593. DOI: 10.1007/s11440-018-0740-8.
doi: 10.1007/s11440-018-0740-8 |
|
Orakoglu ME, Liu JK, Tutumluer E, 2016. Frost depth prediction for seasonal freezing area in Eastern Turkey. Cold Regions Science and Technology, 124: 118-126. DOI: 10.1016/j.coldregions.2015.12.012.
doi: 10.1016/j.coldregions.2015.12.012 |
|
Rajaei P, Baladi G, 2015. Frost Heave: A semi-empirical model based on field data. ASCE Cold Regions Engineering 2015, 382-393. DOI: 10.1061/9780784479315.034.
doi: 10.1061/9780784479315.034 |
|
Sheng DC, Zhang S, Yu ZW, et al., 2013. Assessing frost susceptibility of soils using PCHeave. Cold Regions Science and Technology, 95(11): 27-38. DOI: 10.1016/j.coldregions.2013.08.003.
doi: 10.1016/j.coldregions.2013.08.003 |
|
Sun DY, Wang WH, Wang Q, et al., 2016. Characteristics and prediction of frost heave of saline soil in western Jilin province. International Journal of Heat and Technology, 34(4): 709-714. DOI: 10.18280/ijht.340422.
doi: 10.18280/ijht.340422 |
|
Taber S, 1930. The mechanics of frost heaving. Journal of Geology, 38(4): 303-317. DOI: 10.1086/623720.
doi: 10.1086/623720 |
|
Teltayev BB, Zhussupbekov A, Shakhmov Z, et al., 2020. Field experimental investigations of freezing and thawing of highway subgrade. Transportation Soil Engineering in Cold Regions, 49: 35-47. DOI: 10.1007/978-981-15-0450-1_5.
doi: 10.1007/978-981-15-0450-1_5 |
|
Wang ZL, Fu Q, Jiang QX, et al., 2011. Numerical simulation of water–heat coupled movements in seasonal frozen soil. Mathematical and Computer Modelling, 54(3): 970-975. DOI: 10.1016/j.mcm.2010.11.024.
doi: 10.1016/j.mcm.2010.11.024 |
|
Wu XY, Niu FJ, Lin ZJ, et al., 2018. Delamination frost heave in embankment of high speed railway in high altitude and seasonal frozen region. Cold Regions Science and Technology, 153: 25-32. DOI: 10.1016/j.coldregions.2018.04.017.
doi: 10.1016/j.coldregions.2018.04.017 |
|
Zhang LH, Ma W, Yang C, 2015. Pore water pressure changes of supercooling and ice nucleation stages during freezing point testing. Geotechnique Letters, 5(1): 39-42. DOI: 10.1680/geolett.14.00109.
doi: 10.1680/geolett.14.00109 |
|
Zhang MY, Zhang XY, Li SY, et al., 2017. Effect of temperature gradients on the frost heave of a saturated silty clay with a water supply. Journal of Cold Regions Engineering, 31: 040170114. DOI: 10.1061/(ASCE)CR.1943-5495.0000137.
doi: 10.1061/(ASCE)CR.1943-5495.0000137 |
|
Zhang TJ, Zhou YW, Guo DX, et al., 2001. Geocryology in China. Beijing: Science Press, pp: 245-246. | |
Zhang XY, Zhang MY, Pei WS, et al., 2018. Experimental study of the hydro-thermal characteristics and frost heave behavior of a saturated silt within a closed freezing system. Applied Thermal Engineering, 129: 1447-1454. DOI: 10.1016/j.applthermaleng.2017.10.116.
doi: 10.1016/j.applthermaleng.2017.10.116 |
|
Zhao Y, Yu B, Yu GJ, et al., 2014. Study on the water-heat coupled phenomena in thawing frozen soil around a buried oil pipeline. Applied Thermal Engineering, 73(2): 1477-1488. DOI: 10.1016/j.applthermaleng.2014.06.017.
doi: 10.1016/j.applthermaleng.2014.06.017 |
|
Zheng H, Kanie S, 2015. Combined thermal-hydraulic-mechanical frost heave model based on Takashi's equation. Journal of Cold Regions Engineering, 29(4): 04014019. DOI: 10.1061/(ASCE)CR.1943-5495.0000089.
doi: 10.1061/(ASCE)CR.1943-5495.0000089 |
[1] | HongYan Ma, Feng Zhang, DeCheng Feng, KangWei Tang. Frost-heave properties of saturated compacted silty clay under one-side freezing condition [J]. Sciences in Cold and Arid Regions, 2017, 9(3): 273-279. |
[2] | HongYan Ma, Feng Zhang, DeCheng Feng, Bo Lin. Determination of allowable subgrade frost heave with the pavement roughness index in numerical analysis [J]. Sciences in Cold and Arid Regions, 2015, 7(5): 587-593. |
|