Sciences in Cold and Arid Regions ›› 2021, Vol. 13 ›› Issue (4): 292-298.doi: 10.3724/SP.J.1226.2021.20043.

Previous Articles    

10Be exposure ages of Quaternary Glaciers in Antarctica

WangJing Ni1,ZhiGang Zhang2,3,4,5(),JingXue Guo6,XueYuan Tang6   

  1. 1.School of Teacher Education, Nanjing Normal University, Nanjing, Jiangsu 210023, China
    2.School of Geographical Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
    3.Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, Jiangsu 210023, China
    4.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, Jiangsu 210023, China
    5.State Key Laboratory of Cryospheric Sciences, Northwest Insititute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
    6.Polar Research Institute of China, 451 Jinqiao Road, Pudong, Shanghai 200136, China
  • Received:2020-05-28 Accepted:2021-01-05 Online:2021-08-31 Published:2021-08-19
  • Contact: ZhiGang Zhang
  • Supported by:
    the National Natural Science Foundation of China(41971009);the China Postdoctoral Science Foundation(2015M582728);the Priority Academic Program Development of Jiangsu Higher Education Institutions(64320H116)


In situ terrestrial cosmogenic nuclides (TCN) have been widely applied to date the ages of Quaternary glacial deposits in Antarctica and plays an important role in reconstructing the glacial evolution and climate change. It helps to understand the Antarctic ice sheet's evolution process in Quaternary and shed light on the application of Cosmogenic Nuclide exposure dating technique in glacial geomorphology. In this paper, we retrieved 495 10Be age samples in Antarctica from literature published between 2004 and 2020 and recalculated the TCN ages using version 3.0 online calculator of Cosmic-Ray Produced Nuclide Systematics on Earth (CRONUS-Earth). Several conclusions can be drawn from the results: (1) 75% of the exposure ages are younger than 400 ka, and 91% younger than 1,100 ka. Northern Antarctic Peninsula exposure result is visibly younger than the main glaciers area in East Antarctica due to climate change and geological evaluation since the LGM (Last Glacial Maximum). (2) TCN ages are relevant to the samples' relative positions in the Antarctic continent, but a relationship between their ages and elevations is yet to be determined based on the collected data.

Key words: 10Be exposure ages, in situ terrestrial cosmogenic nuclides, Antarctica

Figure 1

Oblique Google Earth image showing the location of published TCN 10Be exposure ages study sites in Antarctica"

Table 1

Information of TCN 10Be exposure ages studies of Antarctica"

No.Study regionPublicationNo.Study regionPublication
1Mount HardingKong et al., 2010; Dong et al., 20168James Ross IslandJohnson et al., 2011; Nyvlt et al., 2014
2Queen Maud Land

Altmaier et al., 2010

Ak?ar et al., 2020

9Terra Nova BayNicola et al., 2009
3Sj?gren BoydellfjordBalco et al., 201310Shackleton RangeHein et al., 2014
4Drygalski GlacierBalco et al., 201311Hatherton GlacierJoy et al., 2014
5Dry ValleysBalco et al., 2009; Middleton et al., 201212Mackay GlacierEaves et al., 2018
6Pensacola MountainsBentley et al., 201713Campbell GlacierRhee et al., 2019
7Prince Charles MountainsFink et al., 200614Larsen B embaymentJeong et al., 2018
15Skelton NeveAnderson et al., 2020

Figure 2

Comparison of TCN 10Be exposure ages among different regions in Antarctica (1: Mount Harding; 2: Queen Maud Land; 3: Sj?gren Boydellfjord; 4: Drygalski Glacier; 5: Dry Valleys; 6: Pensacola Mountains; 7: Prince Charles Mountains; 8: James Ross Island; 9: Terra Nova Bay; 10: Shackleton Range; 11: Hatherton Glacier; 12: Mackay Glacier; 13: Campbell Glacier; 14: Larsen B embayment; 15: Skelton Neve)"

Figure 3

Distribution of dating results along with location and latitude. (a) Distribution of dating results based on location; (b) Distribution of dating results based on latitude"

Table 2

Statistical results of TCN 10Be exposure ages in Antarctica"

Age range (ka)MIS stageQuantity (PCS)ProportionAge range (ka)MIS stageQuantity (PCS)Proportion

Figure 4

Distribution of dating results along with longitude and latitude in Antarctic Peninsula"

Ackert Jr. RP, 2003. Glaciology: An ice sheet remembers. Science, 299(5603): 57-58. DOI: 1126/science.1079568.
doi: 10. 1126/science.1079568
Akçar N, Yeşilyurt S, Hippe K, et al., 2020. Build-up and chronology of blue ice moraines in Queen Maud Land, Antarctica. Quaternary Science Advances, 2: 100012. DOI:
doi: 10.1016/j.qsa.2020.100012
Altmaier M, Herpers U, Delisle G, et al., 2010. Glaciation history of Queen Maud Land (Antarctica) reconstructed from in-situ produced cosmogenic 10Be, 26Al and 21Ne. Polar Science, 4(1): 42-61. DOI: 2010.01.001.
doi: 10.1016/j.polar. 2010.01.001
Anderson JTH, Wilson GS, Jones RS, et al., 2020. Ice surface lowering of Skelton Glacier, Transantarctic Mountains, since the Last Glacial Maximum: Implications for retreat of grounded ice in the western Ross Sea. Quaternary Science Reviews, 237: 106305. DOI:
doi: 10.1016/j.quascirev.2020.106305
Balco G, Schaefer JM, 2013. Exposure-age record of Holocene ice sheet and ice shelf change in the northeast Antarctic Peninsula. Quaternary Science Reviews, 59: 101-111. DOI:
doi: 10.1016/j.quascirev.2012.10.022
Balco G, 2017. Production rate calculations for cosmic-ray-muon-produced 10Be and 26Al benchmarked against geological calibration data. Quaternary Geochronology, 39: 150-173. DOI:
doi: 10.1016/j.quageo.2017.02.001
Bentley M, Evans D, Fogwill C, et al., 2007. Glacial geomorphology and chronology of deglaciation, South Georgia, sub-Antarctic. Quaternary Science Reviews, 26(5-6): 644-677. DOI: 11.019.
doi: 10.1016/j.quascirev.2006. 11.019
Bentley MJ, Hein AS, Sugden DE, et al., 2017. Deglacial history of the Pensacola Mountains, Antarctica from glacial geomorphology and cosmogenic nuclide surface exposure dating. Quaternary Science Reviews, 158: 58-76. DOI:
doi: 10.1016/j.quascirev.2016.09.028
Borchers B, Marrero S, Balco G, et al., 2016. Geological calibration of spallation production rates in the CRONUS-Earth project. Quaternary Geochronology, 31: 188-198. DOI:
doi: 10.1016/j.quageo.2015.01.009
Bruno LA, Baur H, Graf T, et al., 1997. Dating of Sirius Group tillites in the Antarctic Dry Valleys with cosmogenic 3He and 21Ne. Earth and Planetary Science Letters, 147(1-4): 37-54. DOI:
doi: 10.1016/S0012-821X(97)00003-4
Davies BJ, Hambrey MJ, Smellie JL, et al., 2012. Antarctic Peninsula Ice Sheet evolution during the Cenozoic Era. Quaternary Science Reviews, 31: 30-66. DOI:
doi: 10.1016/j.quascirev.2011.10.012
Dong G, Huang F, Yi C, et al., 2016. Mid-late Pleistocene glacial evolution in the Grove Mountains, East Antarctica, constraints from cosmogenic 10Be surface exposure dating of glacial erratic cobbles. Quaternary Science Reviews, 145: 71-81. DOI:
doi: 10.1016/j.quascirev.2016.05.030
Eaves SR, Collins JA, Jones RS, et al., 2018. Further constraint of the in situ cosmogenic 10Be production rate in pyroxene and a viability test for late Quaternary exposure dating. Quaternary Geochronology, 48: 121-132. DOI:
doi: 10.1016/j.quageo.2018.09.006
Fink D, Mckelvey B, Hambrey M, et al., 2006. Pleistocene deglaciation chronology of the Amery Oasis and Radok Lake, northern Prince Charles Mountains, Antarctica. Earth and Planetary Science Letters, 243(1-2): 229-243. DOI:
doi: 10.1016/j.epsl.2005.12.006
Haywood AM, Hill DJ, Dolan AM, et al., 2013. Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Climate of the Past, 9(1): 191-209. DOI:
doi: 10.5194/cp-9-191-2013
Huang F, Liu X, Kong P, et al., 2008. Fluctuation history of the interior East Antarctic Ice Sheet since mid-Pliocene. Antarctic Science, 20(2): 197-203. DOI: 1017/S0954102007000910.
doi: 10. 1017/S0954102007000910
Jeong A, Lee JI, Seong YB, et al., 2018. Late Quaternary deglacial history across the Larsen B embayment, Antarctica. Quaternary Science Reviews, 189: 134-148. DOI:
doi: 10.1016/j.quascirev.2018.04.011
Johnson JS, Bentley MJ, Roberts SJ, et al., 2011. Holocene deglacial history of the northeast Antarctic Peninsula-A review and new chronological constraints. Quaternary Science Reviews, 30(27-28): 3791-3802. DOI:
doi: 10.1016/j.quascirev.2011.10.011
Joy K, Fink D, Storey B, et al., 2014. A 2 million year glacial chronology of the Hatherton Glacier, Antarctica and implications for the size of the East Antarctic Ice Sheet at the Last Glacial Maximum. Quaternary Science Reviews, 83: 46-57. DOI:
doi: 10.1016/j.quascirev.2013.10.028
Kong P, Huang F, Liu X, et al., 2010. Late Miocene ice sheet elevation in the Grove Mountains, East Antarctica, inferred from cosmogenic 21Ne-10Be-26Al. Global and Planetary Change, 72(1-2): 50-54. DOI:
doi: 10.1016/j.gloplacha.2010.03.005
Lindow J, Castex M, Wittmann H, et al., 2014. Glacial retreat in the Amundsen Sea sector, West Antarctica - first cosmogenic evidence from central Pine Island Bay and the Kohler Range. Quaternary Science Reviews, 98: 166-173. DOI:
doi: 10.1016/j.quascirev.2014.05.010
Middleton JL, Ackert RP, Mukhopadhyay S, 2012. Pothole and channel system formation in the McMurdo Dry Valleys of Antarctica: New insights from cosmogenic nuclides. Earth and Planetary Science Letters, 355-356: 341-350. DOI:
doi: 10.1016/j.epsl.2012.08.017
Mukhopadhyay S, Ackert RP, Pope AE, et al., 2012. Miocene to recent ice elevation variations from the interior of the West Antarctic ice sheet: Constraints from geologic observations, cosmogenic nuclides and ice sheet modeling. Earth and Planetary Science Letters, 337-338: 243-251. DOI:
doi: 10.1016/j.epsl.2012.05.015
Nishiizumi K, 2004. Preparation of 26Al AMS standards. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 223-224: 388-392.
Nishiizumi K, Imamura M, Caffee MW, et al., 2007. Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 258: 403-413.
Nývlt D, Braucher R, Engel Z, et al., 2014. Timing of the Northern Prince Gustav Ice Stream retreat and the deglaciation of northern James Ross Island, Antarctic Peninsula during the last glacial-interglacial transition. Quaternary Research, 82(2): 441-449. DOI:
doi: 10.1016/j.yqres.2014.05.003
Roberts SJ, Hodgson DA, Sterken M, et al., 2011. Geological constraints on glacio-isostatic adjustment models of relative sea-level change during deglaciation of Prince Gustav Channel, Antarctic Peninsula. Quaternary Science Reviews, 30(25-26): 3603-3617. DOI: 1016/j.quascirev.2011.09.009.
doi: 10. 1016/j.quascirev.2011.09.009
Suganuma Y, Miura H, Zondervan A, et al., 2014. East Antarctic deglaciation and the link to global cooling during the Quaternary: evidence from glacial geomorphology and 10Be surface exposure dating of the Sør Rondane Mountains, Dronning Maud Land. Quaternary Science Reviews, 97: 102-120. DOI: 05.007.
doi: 10.1016/j.quascirev.2014. 05.007
Zhang M, Mei J, Zhang Z, et al., 2018. 10Be exposure ages obtained from quaternary Glacial Landforms on the Tibetan Plateau and in the surrounding area. Acta Geologica Sinica, 92(2): 786-800. DOI:
doi: 10.1111/1755-6724.13554
[1] ChuanJin Li,JiaWen Ren,CunDe Xiao,MingHu Ding,AiHong Xie,ZhiHeng Du,XiangYu Ma,DaHe Qin. Accumulation and geochemical evidence for the Little Ice Age episode in eastern Antarctica [J]. Sciences in Cold and Arid Regions, 2019, 11(1): 50-61.
[2] AiHong Xie, ShiMeng Wang, YiCheng Wang, ChuanJin Li. Comparison of temperature extremes between Zhongshan Station and Great Wall Station in Antarctica [J]. Sciences in Cold and Arid Regions, 2018, 10(5): 369-378.
[3] XingXing Jiang, ShuGui Hou, YuanSheng Li, HongXi Pang, Rong Hua, Mayewski Paul, Sneed Sharon, ChunLei An, Handley Michael, Ke Liu, WangBin Zhang. Spatial variations of Pb, As, and Cu in surface snow along the transect from the Zhongshan Station to Dome A, East Antarctica [J]. Sciences in Cold and Arid Regions, 2018, 10(3): 219-231.
Full text



No Suggested Reading articles found!