%A YuMing Wei, XiaoFei Ma, PengShan Zhao %T Transcriptomic comparison to identify rapidly evolving genes in Braya humilis %0 Journal Article %D 2018 %J Sciences in Cold and Arid Regions %R 10.3724/SP.J.1226.2018.00428 %P 428-435 %V 10 %N 5 %U {http://www.scar.ac.cn/CN/abstract/article_10.shtml} %8 2018-11-19 %X

The Brassicaceae species Braya humilis shows broad adaptation to different climatic zones and latitudes. However, the molecular adaptation mechanism of B. humilis is poorly understood. In China, B. humilis is mainly distributed on the Qinghai-Tibetan Plateau (QTP) and in the adjacent arid region. Previous transcriptome analysis of B. humilis has revealed that 39 salt and osmotic stress response genes are subjected to purifying selection during its speciation. To further explore the adaptation mechanism of B. humilis to an arid environment, OrthoMCL program was employed in this study and 6,268 pairs of orthologous gene pairs with high confidence were obtained betweenB. humilis and Arabidopsis thaliana. A comparative evolutionary analysis based on nonsynonymous to synonymous substitution ratio (Ka/Ks) was then conducted. There were 64 pairs exhibiting a Ka/Ks ratio more than 0.5 and among which, three instrumental candidate genes, T2_20487, T2_22576, and T2_13757, were identified with strong selection signatures (Ka/Ks >1). The corresponding A. thaliana orthologs are double-stranded RNA-binding domain protein, MADS-box family protein, and NADH-dehydrogenase subunit 6, which is encoded by mitochondria genome. This report not only demonstrates the adaptation contribution of fast evolving nuclear genes, but also highlights the potential adaptive value of mitochondria gene to the speciation and adaptation of B. humilis toward the extreme environment in an arid region.